ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИНКЛЮЗИВНОГО ВЫСШЕГО ОБРАЗОВАНИЯ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ (ВОЛГОГРАДСКИЙ ФИЛИАЛ)

УТВЕРЖДАЮ

Директор Волкоградского филиана МГГУУ Рябинин А.П.

Волгоградский развида 2019 г.

КУРС ЛЕКЦИЙ ПО ДИСЦИПЛИНЕ

Математика (включая алгебру, начала математического анализа, геометрию)

ОДОБРЕНА	Разработана на основе Федерального
предметно-цикловой	государственного образовательного
комиссией	стандарта среднего общего образования,
Профессиональных дисциплин и дисциплин	(утв. приказом Министерства образования и
общего гуманитарного и социально-	науки РФ от 17 мая 2012 г. №413 "Об
экономического учебного цикла	утверждении федерального
	государственного образовательного
	стандарта среднего общего образования" с
протокол № 6	изменениями и дополнениями от 29 декабря
протокол № <u>6</u> от « <u>17</u> » <u>мивари</u> 2019 г.	2014 г., 31 декабря 2015 г., 29 июня 2017 г.)
председатель предметно-цикловой комиссииО.В. Сарафанова	Заместитель директора по учебно- методической работе <u>Году</u> Казакова О.И.
составитель (автор): Сарафанова высшей квалификационной категории	Ольга Владимировна, преподаватель ВФ МГГЭУ
рецензенты: Синельник Татьяна квалификационной категории ВФ МГ	Евгеньевна, преподаватель высшей ГЭV
льшификационной категории БФ ин	

Комитет образования, науки и молодежной политики Волгоградской области Государственное автономное учреждение дополнительного профессионального образования «Волгоградская государственная академия последипломного образования» (ГАУ ДПО «ВГАПО»)

400012, г. Волгоград, ул. Новодвинская, 19A Тел. 8442-606-613, 606-614, 606-609

E-mail: vgapkro@mail.ru (приемная)

E-mail: timnpo@yandex.ru (кафедра ТиМНПО)

MOPAGK N89

ВЫПИСКА

из протокола №1 от «16» сентября 2019 года заседания Экспертного научно-методического совета профессионального образования Волгоградской области

Обсуждали:

Предложение УМО об использовании в учебном процессе профессиональных образовательных организаций курса лекций по учебной дисциплине Математика разработчика Сарафановой О.В., Московского государственного гуманитарно-экономического университета (Волгоградский филиал).

Постановили:

Курс лекций по учебной дисциплине Математика разработчика Сарафановой O.B., Московского государственного гуманитарно-экономического (Волгоградский университета филиал), соответствует установленным в системе СПО ВО требованиям учебночасти комплексного методического обеспечения и рекомендуется качестве учебного издания для использования в учебном профессиональных процессе образовательных организаций, реализующих программы среднего профессионального образования, всех специальностей.

Председатель ЭНМС

Bomp

/С.В. Куликова, д.п.н., профессор, ректор ГАУ ДПО «ВГАПО»/

Оглавление

Введение	4
Раздел 1 Основы тригонометрии	7
Тема 1.1 Радианная мера угла.	7
Тема 1.2. Тригонометрические уравнения.	20
Тема 1.3. Преобразования тригонометрических выражений.	33
Раздел 2 Корни, степени и логарифмы	39
Тема 2.1 Корни и степени	39
Тема 2.2. Логарифм	50
Раздел 3. Функции, их свойства и графики	60
Раздел 4. Последовательности. Предел и непрерывность функции	67
Раздел 5 Дифференциальное исчисление	74
Тема 5.1. Понятие производной	74
Тема 5.2 Приложение производной	77
Раздел 6. Интегральное исчисление	82
Тема 6.1. Неопределенный интеграл	82
Тема 6.2. Определенный интеграл и его приложение	85
Раздел 7 Векторы	91
Раздел 8 Прямые и плоскости в пространстве	95
Раздел 9 Геометрические тела	101
Раздел 10 Элементы комбинаторики, статистики, теории вероятностей	107
Рекомендованная литература	114

Введение

Сборник лекций (далее сборник) по общеобразовательной учебной дисциплине «Математика (включая алгебру и начала математического анализа, геометрию)» (далее — «Математика») предназначен для изучения математики в профессиональных образовательных организациях СПО, реализующих образовательную программу среднего общего образования в пределах освоения основной профессиональной образовательной программы СПО (ОПОП СПО) на базе основного общего образования при подготовке квалифицированных рабочих, служащих и специалистов среднего звена.

Сборник разработан на основе требований ФГОС среднего общего образования, предъявляемых к структуре, содержанию и результатам освоения учебной дисциплины «Математика», в соответствии с Рекомендациями по организации получения среднего общего образования в пределах освоения образовательных программ среднего профессионального образования на базе основного общего образования с учетом требований федеральных государственных образовательных стандартов и получаемой профессии или специальности среднего профессионального образования (письмо Департамента государственной политики в сфере подготовки рабочих кадров и ДПО Минобрнауки России от 17.03.2015 № 06-259).

Сборник учебной дисциплины может быть использован в учреждениях среднего профессионального образования, реализующих программу подготовки специалистов среднего звена.

Сборник создан для работы на занятиях, при выполнении домашнего задания и подготовки к текущему и итоговому контролю по дисциплине. Сборник включает теорию и практические примеры по следующим разделам и темам:

Раздел 1 Основы тригонометрии

Тема 1.1 Радианная мера угла.

Тема 1.2. Тригонометрические уравнения.

Тема 1.3. Преобразования тригонометрических выражений.

Раздел 2 Корни, степени и логарифмы

Тема 2.1 Корни и степени

Тема 2.2. Логарифм.

Раздел 3. Функции, их свойства и графики.

Раздел 4. Последовательности. Предел и непрерывность функции

Раздел 5 Дифференциальное исчисление

Тема 5.1. Понятие производной

Тема 5.2 Приложение производной

Раздел 6. Интегральное исчисление

Тема 6.1. Неопределенный интеграл

Тема 6.2. Определенный интеграл и его приложение

Раздел 7 Векторы

Раздел 8 Прямые и плоскости в пространстве

Раздел 9 Геометрические тела

Раздел 10 Элементы комбинаторики, статистики, теории вероятностей

Изучение учебной дисциплины «Математика» ориентировано на достижение следующих целей:

- обеспечение сформированности представлений о социальных, культурных и исторических факторах становления математики;
- обеспечение сформированности логического, алгоритмического и математического мышления;
- обеспечение сформированности умений применять полученные знания при решении различных задач;

• обеспечение сформированности представлений о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описывать и изучать реальные процессы и явления.

Освоение содержания учебной дисциплины Математика обеспечивает достижение студентами следующих результатов:

- личностных:
- сформированность представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, идеях и методах математики;
- понимание значимости математики для научно-технического прогресса, сформированность отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей;
- развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, для продолжения образования и самообразования;
- овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для освоения смежных естественно-научных дисциплин и дисциплин профессионального цикла, для получения образования в областях, не требующих углубленной математической подготовки;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- готовность и способность к самостоятельной творческой и ответственной деятельности;
- готовность к коллективной работе, сотрудничеству со сверстниками в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;
 - метапредметных:
- умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
- умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- владение языковыми средствами: умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
- владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств для их достижения;
- целеустремленность в поисках и принятии решений, сообразительность и интуиция, развитость пространственных представлений; способность воспринимать красоту и гармонию мира;

- предметных:
- сформированность представлений о математике как части мировой культуры и месте математики в современной цивилизации, способах описания явлений реального мира на математическом языке;
- сформированность представлений о математических понятиях как важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;
- владение методами доказательств и алгоритмов решения, умение их применять, проводить доказательные рассуждения в ходе решения задач;
- владение стандартными приемами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств;
- сформированность представлений об основных понятиях математического анализа и их свойствах, владение умением характеризовать поведение функций, использование полученных знаний для описания и анализа реальных зависимостей;
- владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах; сформированность умения распознавать геометрические фигуры на чертежах, моделях и в реальном мире; применение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием;
- сформированность представлений о процессах и явлениях, имеющих вероятностный характер, статистических закономерностях в реальном мире, основных понятиях элементарной теории вероятностей; умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;
- владение навыками использования готовых компьютерных программ при решении задач.

По каждой теме в сборнике перечислены основные понятия и термины, вопросы, необходимые для изучения (план изучения темы), краткая информация по каждому вопросу из подлежащих изучению, а также приведены примеры решения стандартных задач.

Приступая к изучению нового раздела необходимо внимательно изучить перечень вопросов, подлежащий изучению, обращать внимание на определения, формулы и другую выделенную информацию. Внамительно рассмотрите примеры и прочитайте пояснения к ним.

Раздел 1 Основы тригонометрии

Тема 1.1 Радианная мера угла.

План изучения темы (перечень вопросов, обязательных к изучению):

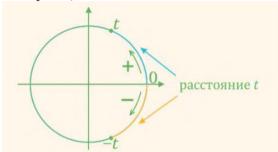
- 1) Радианная мера угла.
- 2) Синус, косинус, тангенс и котангенс числа.
- 3) Основные тригонометрические тождества.
- 4) Формулы приведения.
- 5) Тригонометрические функции их свойства и графики.

Числовая окружность. Радианное измерение углов.

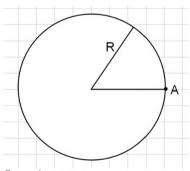
Определение

Пусть дана единичная окружность (ее радиус R=1), на ней отмечена начальная точка A- правый конец горизонтального диаметра. Поставим в соответствие каждому действительному числу t точку окружности по следующему правилу:

- 1) если t>0, то, двигаясь из точки A в направлении против часовой стрелки (положительное направление обхода окружности), опишем по окружности путь AM длиной t. Точка M и будет искомой точкой M(t).
- 2) если t<0, то, двигаясь из точки A в направлении по часовой стрелке (отрицательное направление обхода окружности), опишем по окружности путь AM длиной |t|. Точка M и будет искомой точкой M(t).
- 3) Числу t=0, поставим в соответствие точку A; A=A(0).



Единичную окружность с установленным соответствием (между действительными числами и точками окружности) будем называть <u>числовой окружностью</u>. Рассмотрим числовую окружность



Длина окружности то $l=2\pi R$, т.к. R=1, то $l=2\pi$. С другой стороны: если повернуть радиус от точки А вокруг окружности до точки А, получим угол 360^{0} .

Таким образом $360^{\circ} = 2\pi$

Если точка М числовой окружности соответствует числу t, то она соответствует и числу вида $t+2\pi k$, где k - любое целое число $(k\in Z)$

Определение

Центральный угол, опирающийся на дугу, длина которой равна одному радиусу, называется <u>углом в 1 радиан</u>.

Определение

$$\overline{\text{Дуга в I радиан содержит } \frac{180}{\pi}$$
 градусов, т.е.

$$1$$
 радиан = $\left(\frac{180}{\pi}\right)^0$

Определение

Дуга в
$$1^{0}$$
 содержит $\frac{\pi}{180}$ радиан, т.е

$$1^{\circ} = \left(\frac{\pi}{180}\right)$$
 радиан

Примеры перевода градусов в радианы и

радиан в градусы

1) Пример Найти радианную меру угла, равного 54^0

Решение.

$$1^{\circ} = \left(\frac{\pi}{180}\right)$$
 радиан, значит $54^{\circ} = \left(\frac{\pi}{180}\right) \cdot 54$ радиан (после сокращения на 18) получим: $54^{\circ} = \left(\frac{3\pi}{10}\right)$ радиан

2) Пример Найти градусную меру угла, равного $\frac{2\pi}{3}$ радиан.

Решение:

$$1$$
 радиан = $\left(\frac{180}{\pi}\right)^{\circ}$, значит $\frac{2\pi}{3}$ радиан = $\left(\frac{180}{\pi}\cdot\frac{2\pi}{3}\right)^{\circ}$ (после сокращения на 3 и на π) получим: $\frac{2\pi}{3}$ радиан = 120°

Поместим числовую окружность в декартовую систему координат таким образом, чтобы центр этой окружности совпал с началом координат. Для любой точки M(x,y) числовой окружности выполняются неравенства $-1 \le x \le 1$; $-1 \le y \le 1$

Найдем координаты точки M(x,y)числовой окружности, соответствующей дуге в 30^{0} (или радиан). Сделаем дополнительные построения: опустим перпендикуляр из точки М на ось ОХ, прямоугольный треугольник MOP, y $\angle MOP = 30^{\circ}$ длина которого И отрезка соответствует ординате точки М, т.е МР=у, а длина отрезка ОР соответствует абсциссе точки М, т.е ОР=х (смотри рисунок 1). Так как катет, лежащий против угла 30^{0} равен половине гипотенузы,

$$PM = \frac{1}{2}OM$$
; m.k. $OM = R = 1$, mo $PM = \frac{1}{2} \cdot 1 = \frac{1}{2}$,

$$m.e.\ PM = \frac{1}{2}, a\$$
значит $y = \frac{1}{2}$
По теореме Пифагора $PO = \sqrt{OM^2 - PM^2} = \sqrt{1^2 - \left(\frac{1}{2}\right)^2} = \sqrt{1 - \frac{1}{4}} = \sqrt{\frac{4}{4} - \frac{1}{4}} = \frac{\sqrt{3}}{2}$
Т.о. $PO = \frac{\sqrt{3}}{2}, \quad m.e. \quad x = \frac{\sqrt{3}}{2}, \quad \text{а}$ значит $M\left(\frac{\sqrt{3}}{2}; \frac{1}{2}\right)$ (смотри рисунок 2)

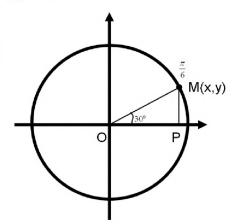
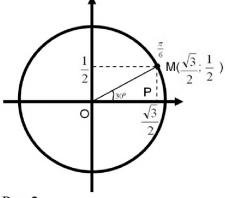


Рис 1



Найдем координаты точки M(x,y)окружности, соответствующей дуге в 45⁰ (или дополнительные Сделаем радиан). построения: опустим перпендикуляр из точки М на ось ОХ, MOP, y получим прямоугольный треугольник которого $\angle MOP = 45^{\circ}$ и длина отрезка MP соответствует ординате точки М, т.е МР=у, а длина отрезка ОР соответствует абсциссе точки М, т.е ОР=х (смотри рисунок 3). Так как сумма углов треугольника равна 180° , то $\angle PMO = 45^{\circ}$. В треугольнике два равных угла, значит он – равнобедренный, и значит РО=МР, т.е. х=у. Так как М лежит на окружности, то ее координаты удовлетворяют уравнению окружности

$$x^{2} + y^{2} = 1$$
. Получим систему $\begin{cases} x = y \\ x^{2} + y^{2} = 1 \end{cases}$ подставим х

вместо у во второе уравнение, получим $x^2+x^2=1 \Rightarrow 2x^2=1 \Rightarrow x^2=\frac{1}{2} \Rightarrow x=\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}$, т.к

y=x, to
$$y = \frac{\sqrt{2}}{2}$$
.

$$M\left(\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$$
 (смотри рисунок 4)

Найдем координаты точки M(x,y) числовой окружности, соответствующей дуге в 60^0 (или $\frac{\pi}{3}$

Сделаем дополнительные радиан). построения: опустим перпендикуляр из точки М на ось ОХ, получим прямоугольный треугольник MOP, y $\angle MOP = 60^{\circ}$ которого И длина отрезка соответствует ординате точки М, т.е МР=у, а длина отрезка ОР соответствует абсциссе точки М, т.е ОР=х (смотри рисунок 5). Так как катет, лежащий против равен половине гипотенузы,

$$PO = \frac{1}{2}OM$$
; $m.\kappa. OM = R = 1$, $mo PO = \frac{1}{2} \cdot 1 = \frac{1}{2}$,

m.e.
$$PO = \frac{1}{2}$$
, а значит $x = \frac{1}{2}$

По теореме Пифагора $PM = \sqrt{OM^2 - PO^2} = \sqrt{1^2 - \left(\frac{1}{2}\right)^2} = \sqrt{1 - \frac{1}{4}} = \sqrt{\frac{4}{4} - \frac{1}{4}} = \frac{\sqrt{3}}{2}$

T.o.
$$PM = \frac{\sqrt{3}}{2}$$
, m.e. $y = \frac{\sqrt{3}}{2}$, a значит

$$M\left(\frac{1}{2}; \frac{\sqrt{3}}{2}\right)$$
 (смотри рисунок 6).

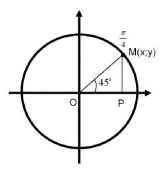


Рис 3

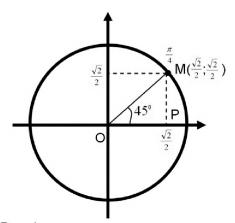


Рис 4

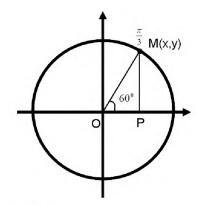


Рис 5

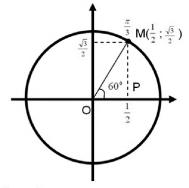


Рис 6

Найдем координаты точки M(x,y) числовой окружности, соответствующей дуге в 90^{0} (или $\frac{\pi}{2}$ радиан) (смотри рис 7). Так как точка M лежит на оси OY и на окружности, то зная, что радиус R=1 можно утверждать, что x=0, y=1, таким образом M(0;1) (смотри рис 8).

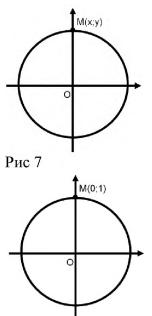
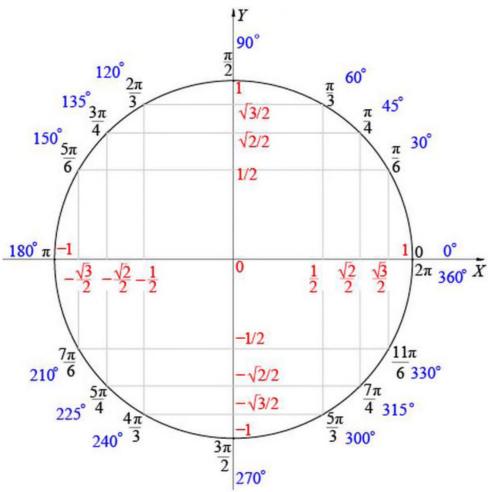


Рис 8

Рассуждая аналогично, можно получить окружность на которой изображены точки, соответствующие углам в градусах и радианах и их координаты.



Синус и косинус. Тангенс и котангенс.

Определение

Если точка M числовой окружности соответствует числу t, то абсциссу точки M называют косинусом числа t, а ординату точки M называют синусом числа t.

Определение

Отношение синуса числа t к косинусу того же числа t называют тангенсом числа t, т.е.

$$tgt = \frac{Sint}{Cost}$$

$$Cost$$

Sin t

ctgt =

косинуса числа t к синусу того же числа t называют числа t, т.е.

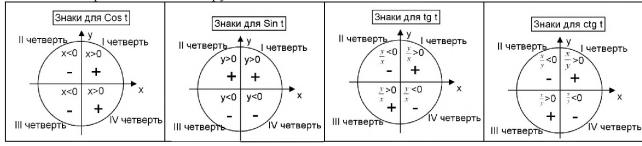
Правило (Вычисление косинуса)

Чтобы вычислить косинус числа t, нужно на числовой окружности найти точку, соответствующую числу t и спроецировать ее на ось OX (пройти по пунктирной линии вверх или вниз до оси OX).

Правило (Вычисление синуса)

Чтобы вычислить синус числа t, нужно на числовой окружности найти точку, соответствующую числу t и спроецировать ее на ось OY (пройти по пунктирной линии влево или вправо до оси OY).

Так как x=Cos t и y=Sin t, то можно определить знак синуса и косинуса в каждой из 4-х четвертей числовой окружности.



Примеры вычисления тригонометрических функций

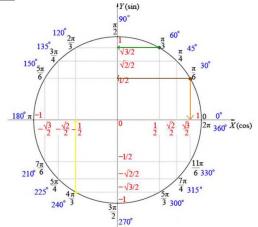
Sin
$$60^0 = \frac{\sqrt{3}}{2}$$

Находим на окружности точку 60^0 (она выделена зеленым цветом) и проецируем ее на ось ОУ (процесс проецирования изображен зелеными стрелками),

находим значение $\frac{\sqrt{3}}{2}$.

$$\cos \frac{4\pi}{3} = -\frac{1}{2}$$

Находим на окружности точку $\frac{4\pi}{3}$ (она выделена желтым цветом) и проецируем ее на ось



ОХ (процесс проецирования изображен желтым цветом), находим значение $\frac{1}{2}$.

$$tg \ 30^0 = \frac{Sin \ 30^\circ}{Cos \ 30^\circ} = \frac{1}{2} \div \frac{\sqrt{3}}{2} = \frac{1}{2} \cdot \frac{2}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

Находим на окружности точку 30^0 (она выделена коричневым цветом) и вычисляем для нее сначала Sin 30^0 (спроецировав на ось OY: коричневая стрелка), находим значение

 $\sin 30^0 = \frac{1}{2}$, а затем вычисляем $\cos 30^0$ спроецировав эту же точку на ось OX: оранжевая

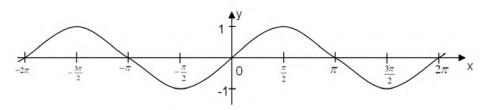
стрелка), находим Cos
$$30^0 = \frac{\sqrt{3}}{2}$$

Тригонометрические функции, их свойства и графики

Функция y = Sin x, ее свойства

	<u> </u>	
1	Область определения	$(-\infty;+\infty)$
2	Множество значений	[-1;1]
3	Четность	Нечетная, т.к. для всех $x \in R$ $\sin(-x) = -Sin x$
4	Периодичность	Периодическая с наименьшим положительным периодом 2π , т.е. для всех $x \in R$ $\sin(x+2\pi) = Sin x$
5	Нули функции	$Sin x = 0$ npu $x = \pi k, k \in Z$
6	Знакопостоянство	$Sin x > 0$ для всех $x \in (2\pi k; \pi + 2\pi k), k \in Z$
		$Sin x < 0$ для всех $x \in (\pi + 2\pi k; 2\pi + 2\pi k), k \in \mathbb{Z}$
7	Монотонность	$y = Sin x$ возрастает на промежутке $\left[-\frac{\pi}{2} + 2\pi k : \frac{\pi}{2} + 2\pi k \right] k \in \mathbb{Z}$
		$y = Sin x$ убывает на промежутке $\left[\frac{\pi}{2} + 2\pi k; \frac{3\pi}{2} + 2\pi k\right], k \in Z$
8	Наибольшее и	$Sin_{nauk}\left(\frac{\pi}{2}+2\pi k\right)=1, k\in Z$ $Sin_{nauk}\left(\frac{3\pi}{2}+2\pi k\right)=-1, k\in Z$
	наименьшее значения	(2)

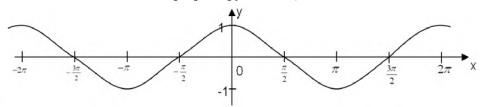
 Γ рафик функции y = Sin x



Функция y = Cos x, ее свойства

1	Область определения	$(-\infty;+\infty)$
2	Множество значений	[-1;1]
3	Четность	Четная, т.к. для всех $x \in R$ $Cos(-x) = Cos x$
4	Периодичность	Периодическая с наименьшим положительным периодом 2π , т.е. для всех $x \in R$ $Cos(x+2\pi) = Cos x$
5	Нули функции	$Cos x = 0$ npu $x = \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$
6	Знакопостоянство	$Cos x > 0$ для всех $x \in (-\frac{\pi}{2} + 2\pi k; \frac{\pi}{2} + 2\pi k), k \in \mathbb{Z}$
		$Cos x < 0$ для всех $x \in (\frac{\pi}{2} + 2\pi k; \frac{3\pi}{2} + 2\pi k), k \in \mathbb{Z}$
7	Монотонность	$y = Cos x$ возрастает на промежутке $[-\pi + 2\pi k; 2\pi k], k \in \mathbb{Z}$
		$y = Cos x$ убывает на промежутке $[2\pi k; \pi + 2\pi k], k \in \mathbb{Z}$
8	Наибольшее и	$Cos_{min}(2\pi k) = 1, k \in \mathbb{Z}$ $Cos_{min}(\pi + 2\pi k) = -1, k \in \mathbb{Z}$
	наименьшее значения	Haun (VIIII)

График функции y = Cos x

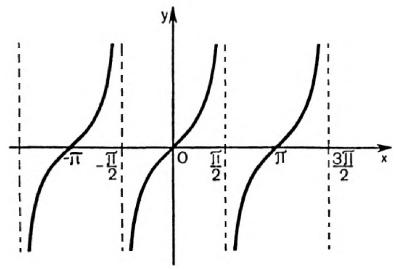


Функция y = tgx

Свойства

	Своиства	
1	Область определения	$\left(-\frac{\pi}{2}+\pi n;\frac{\pi}{2}+\pi n\right)$
2	Множество значений	$(-\infty; +\infty)$
3	Четность	Нечетная, т.к. для всех $x \in R$ $tg(-x) = -tgx$
4	Периодичность	Периодическая с наименьшим положительным периодом π , т.е. для всех $x \in R$ $tg(x+\pi) = tg(x)$
5	Нули функции	$tg x = 0 npu x = \pi k, k \in \mathbb{Z}$
6	Знакопостоянство	$tg \ x > 0$ для всех $x \in (\pi k; \frac{\pi}{2} + \pi k), k \in Z$
		$tg x < 0$ для всех $x \in (-\frac{\pi}{2} + \pi k; \pi k), k \in Z$
7	Монотонность	y = tgx возрастает на промежутке
		$\left[-\frac{\pi}{2}+\pi k;\frac{\pi}{2}+\pi k\right],k\in Z$
8	Наибольшее и	Функция $y = tgx$ неограниченна, поэтому не достигает ни
	наименьшее	наибольшего ни наименьшего значений.
	значения	

Γ рафик функции y = tgx

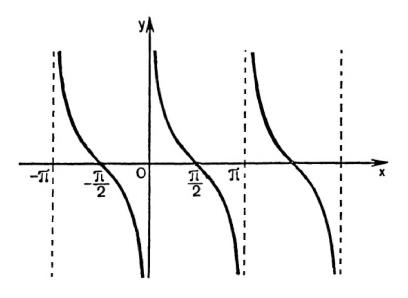


Φ ункция y = ctgx

Свойства

	СБОИСТВа	
1	Область определения	$(\pi n; \pi + \pi n)$
2	Множество значений	$(-\infty; +\infty)$
3	Четность	Нечетная, т.к. для всех $x \in R$ $ctg(-x) = -ctg x$
4	Периодичность	Периодическая с наименьшим положительным периодом π , т.е. для всех $x \in R$ $ctg(x+\pi) = ctg x$
5	Нули функции	$ctg x = 0 npu x = \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$
6	Знакопостоянство	$ctg x > 0$ для $ecex x \in (\pi k; \frac{\pi}{2} + \pi k), k \in \mathbb{Z}$
		$ctg x < 0$ для $ecex x \in (-\frac{\pi}{2} + \pi k; \pi k), k \in Z$
7	Монотонность	y = ctgx убывает на промежутке
		$[\pi k, \pi + \pi k], k \in \mathbb{Z}$
8	Наибольшее и наименьшее	Функция $y = ctgx$ неограниченна, поэтому не достигает
	значения	ни наибольшего ни наименьшего значений.

График функции y = ctgx



Основные тригонометрические тождества

Основные тригонометрические тождества				
		$Cos \alpha = \pm \sqrt{1 - Sin^2 \alpha}$	1.1	
	1	$Sin\alpha = \pm \sqrt{1 - Cos^2\alpha}$	1.2	
$Sin^2\alpha + Cos^2\alpha = 1, \alpha \in R$		$Sin^2\alpha = 1 - Cos^2\alpha, \alpha \in R$	1.3	
		$Cos^2\alpha = 1 - Sin^2\alpha, \alpha \in R$	1.4	
Sin or		$Sin \alpha = tg \alpha \cdot Cos \alpha$	2.1	
$tg\alpha = \frac{\sin\alpha}{\cos\alpha}, \cos\alpha \neq 0$	2	$Cos\alpha = \frac{Sin\alpha}{tg\alpha}, tg\alpha \neq 0$	2.1	
Cong		$Cos\alpha = ctg\alpha \cdot Sin\alpha$	3.1	
$ctg\alpha = \frac{Cos\alpha}{Sin\alpha}, Sin\alpha \neq 0$	3	$Sin \alpha = \frac{Cos \alpha}{ctg \alpha}, ctg \alpha \neq 0$	3.2	
$ta\alpha \cdot cta\alpha = 1$	4	$tg\alpha = \frac{1}{ctg\alpha}, ctg\alpha \neq 0$	4.1	
$tg \alpha \cdot ctg \alpha = 1$	4	$ctg\alpha = \frac{1}{tg\alpha}, tg\alpha \neq 0$	4.2	
$tg^2 \alpha + 1 = \frac{1}{Cos^2 \alpha}, Cos \alpha \neq 0$	5	$\cos\alpha = \pm \sqrt{\frac{1}{tg^2\alpha + 1}}$	5.1	
$ctg^{2}\alpha+1=\frac{1}{Sin^{2}\alpha}, Sin\alpha\neq0$	6	$Sin \alpha = \pm \sqrt{\frac{1}{ctg^2 \alpha + 1}}$	6.1	

Примеры применения основных тригонометрических тождеств для решения задач.

1) ПримерУпростить $\frac{\frac{\partial \pi g}{\partial \pi g} \frac{peшения \, 3a \partial a 4.}{\cos^2 \alpha - ctg^2 \alpha}}{\cos^2 \alpha - ctg^2 \alpha}$

Cos a eig a	
1) Решение	<u>Пояснение</u>
Будем полагать, что данное выражение	е имеет смысл при всех допустимых значениях $lpha$
$Sin^2 \alpha - tg^2 \alpha =$	Упростим числитель.
$= tg^2 \alpha \cdot Cos^2 \alpha - tg^2 \alpha =$	$tg \alpha \cdot Cos \alpha = Sin \alpha$, (формула 2.1), значит
	$tg^2 \alpha \cdot Cos^2 \alpha = Sin^2 \alpha$
$-t\sigma^2 \alpha (C \circ \sigma^2 \circ (1) -$	Вынесем $tg^2\alpha$ за скобку.
$= tg^2 \alpha (Cos^2 \alpha - 1) =$	В скобке вынесем минус за скобку.
$= tg^2 \alpha \left(-(1 - Cos^2 \alpha) \right) =$	$1-Cos^2\alpha = Sin^2\alpha$, $\alpha \in R$ (формула 1.3)
$= tg^2 \alpha (-Sin^2 \alpha) =$	
$=-tg^2\alpha\cdot Sin^2\alpha$	
$Cos^2 \alpha - ctg^2 \alpha =$	Упростим знаменатель.
$= ctg^2 \alpha \cdot Sin^2 \alpha - ctg^2 \alpha =$	$ctg \alpha \cdot Sin \alpha = Cos \alpha$ (формула 3.1), значит
	$ctg^2 \alpha \cdot Sin^2 \alpha = Cos^2 \alpha$
-4-2 ·· (G:-2 ·· 1)	Вынесем $ctg^2 \alpha$ за скобку.
$= ctg^2 \alpha (Sin^2 \alpha - 1) =$	Вынесем минус за скобку.
$= ctg^2 \alpha \left(-(1-Sin^2 \alpha) \right) =$	$1-Sin^2\alpha=Cos^2\alpha, \alpha\in R$ (формула 1.4)
$= ctg^2 \alpha \cdot (-Cos^2 \alpha) =$	(T-r)
$=-ctg^2\alpha\cdot Cos^2\alpha$	

Таким образом

$$\frac{\sin^2 \alpha - tg^2 \alpha}{\cos^2 \alpha - ctg^2 \alpha} =$$

$$= \frac{-tg^2 \alpha \cdot \sin^2 \alpha}{-ctg^2 \alpha \cdot \cos^2 \alpha} =$$

$$= tg^2 \alpha \cdot \frac{1}{ctg^2 \alpha} \cdot \frac{\sin^2 \alpha}{\cos^2 \alpha} =$$

$$= tg^2 \alpha \cdot tg^2 \alpha \cdot tg^2 \alpha =$$

$$= tg^6 \alpha$$

Отрицательное число при делении на отрицательное дает положительное (при делении минус на минус дает плюс)

$$=\frac{-tg^{2}\alpha\cdot Sin^{2}\alpha}{-ctg^{2}\alpha\cdot Cos^{2}\alpha}=$$

$$=tg^{2}\alpha\cdot\frac{1}{ctg^{2}\alpha}\cdot\frac{Sin^{2}\alpha}{Cos^{2}\alpha}=$$

$$=tg^{2}\alpha\cdot\frac{1}{ctg^{2}\alpha}\cdot\frac{Sin^{2}\alpha}{Cos^{2}\alpha}=$$

$$=tg^{2}\alpha\cdot tg^{2}\alpha\cdot tg^{2}\alpha\cdot tg^{2}\alpha=$$

$$=tg^{2}\alpha\cdot tg^{2}\alpha\cdot tg^{2}\alpha$$

$$=tg^{2}\alpha\cdot tg^{2}\alpha\cdot tg^{2}\alpha=$$

2) Пример Известно $Sin \alpha = \frac{3}{5}$, $90^{\circ} < \alpha < 180^{\circ}$, найти $a)Cos\alpha$, $b)tg\alpha$, $b)ctg\alpha$

2) Решение Пояснение $Cos\alpha = \pm \sqrt{1 - Sin^2\alpha} =$ Используем формулу 1.1. Вместо $Sin \alpha$ подставляем его значение $\frac{3}{5}$ и $=\pm\sqrt{1-\left(\frac{3}{5}\right)^2}=\pm\sqrt{\frac{1}{1}-\frac{9}{25}}=$ вычисляем. Приводим дроби $\frac{1}{1}$ *и* $\frac{9}{25}$ к общему знаменателю 25, $=\pm\sqrt{\frac{25}{25}-\frac{9}{25}}=\pm\sqrt{\frac{16}{25}}=\pm\frac{4}{5}$ и вычисляем.

т.к. $90^{\circ} < \alpha < 180^{\circ}$, а это II четверть, а $Cos \alpha$ в этой четверти отрицательный, то оставляем значение со знаком минус. Т.о. $Cos\alpha = -\frac{4}{5}$

$$tg \alpha = \frac{Sin \alpha}{Cos \alpha} =$$

$$= \frac{3}{5} \div \left(-\frac{4}{5}\right) =$$

$$= \frac{3}{5} \cdot \left(-\frac{5}{4}\right) = -\frac{3 \cdot 5}{5 \cdot 4} = -\frac{3}{4}$$

Используем формулу 2.

Вместо $Sin \alpha$ подставляем его значение $\frac{3}{5}$, вместо

 $Cos\alpha$ подставляем его значение $-\frac{4}{5}$

Деление заменяем на умножение при этом вторую дробь переворачиваем, выполняем сокращение на число 5.

T.o.
$$tg\alpha - \frac{3}{4}$$

$$ctg\alpha = \frac{Cos\alpha}{Sin\alpha} =$$

$$= -\frac{4}{5} \div \frac{3}{5} =$$

$$= -\frac{4}{5} \cdot \frac{5}{3} = -\frac{4 \cdot 5}{5 \cdot 3} = -\frac{4}{3}$$
T.o. $ctg\alpha - \frac{4}{3}$

Используем формулу 3.

Вместо $Sin \alpha$ подставляем его значение $\frac{3}{5}$, вместо

 $Cos\alpha$ подставляем его значение $-\frac{4}{5}$

Деление заменяем на умножение при этом вторую дробь переворачиваем, выполняем сокращение на число 5.

T.o.
$$ctg\alpha - \frac{4}{3}$$

Формулы приведения

Формулами приведения называются соотношения с помощью которых значения тригонометрических функций аргументов $\frac{\pi}{2} \pm \alpha$, $\pi \pm \alpha$, $\frac{3\pi}{2} \pm \alpha$, $2\pi \pm \alpha$, выражаются через значения Sin x, Cos x, tg x, ctg x.

Все формулы приведения можно свести в таблицу

		Аргумент а						
Функция с	$\frac{\pi}{2}-\alpha$	$\frac{\pi}{2} + \alpha$	πα	π+α	$\frac{3\pi}{2}$ — α	$\frac{3\pi}{2} + \alpha$	$2\pi - \alpha$	2π+α
sin a	cos a	cos a	sin œ	— sin а	−cos α	—cos a	— sin a	sin a
cos a	sin α	—sin α	—cos α	— cos α	—sin α	sin a	cos a	cos a
tg a	ctg a	ctg α	—tgα	tg a	ctgα	ctg α	—tg a	tg a
ctg α	tgα	—tg α	—ctg α	ctg &	tg α	−tg α	—ctg a	ctg a

Для облегчения запоминания приведенных формул можно воспользоваться следующими правилами:

- 1) Считая угол α острым углом (т.е. $0 < \alpha < \frac{\pi}{2}$ или $0 < \alpha < 90^{\circ}$) перед функцией поставить такой знак, который имеет приводимая функция (знак определяем по тому, в какую четверть попадает угол, знаки функций по четвертям смотри в теме «Синус и косинус. Тангенс и котангенс»).
- 2) При переходе от функции углов $\frac{\pi}{2} \pm \alpha$ *или* $(90^{\circ} \pm \alpha)$, $\frac{3\pi}{2} \pm \alpha$ *или* $(270^{\circ} \pm \alpha)$, к функциям угла α название функции <u>изменяют</u>: синус на косинус, тангенс на котангенс и наоборот; при переходе от функции углов $\pi \pm \alpha$ *или* $(180^{\circ} \pm \alpha)$, $2\pi \pm \alpha$ *или* $(360^{\circ} \pm \alpha)$, к функциям угла α название функции не изменяют.

Примеры применения формул приведения

1) Пример Привести к тригонометрической функции острого угла и вычислить: a) Sin 1935⁰; б) Cos (-1560⁰); в) $tg(-23,25\pi)$

а) Решение	<u>Пояснения</u>
$Sin 1935^{\circ} = Sin (360^{\circ} \cdot 5 + 135^{\circ}) =$	Т.к. через 360 ⁰ значения всех тригонометрических
	функций повторяются, то и через (360° · 5) тоже повторятся.
$= Sin135^{\circ} = Sin(90^{\circ} + 45^{\circ}) =$	(90° + 45°) - это угол II четверти, а функция синус больше нуля в этой четверти и 90° функцию меняет, т.е.
$= Cos45^{\circ} =$	синус на косинус.
	Находим на тригонометрическом круге точку 45 ⁰ и
	проецируем ее на ось ОХ (идем по пунктирной линии
$=\frac{\sqrt{2}}{2}$	вниз до оси ОХ), находим значение $\frac{\sqrt{2}}{2}$

б) Решение	<u>Пояснения</u>
$Cos(-1560^{\circ}) =$	Т.к. функция косинус четная, то $Cos(-\alpha) = Cos(\alpha)$, а
$= Cos(1560^{\circ}) =$	значит, $Cos(-1560^{\circ}) = Cos(1560^{\circ})$
$= Cos(360^{\circ} \cdot 4 + 120^{\circ}) =$ $= Cos120^{\circ} =$	Т.к. через 360° значения всех тригонометрических функций повторяются, то и через $(360^{\circ} \cdot 4)$ тоже повторятся.
$= Cos(90^{\circ} + 30^{\circ}) = -Sin30^{\circ} =$	$(90^{\circ} + 30^{\circ})$ - это угол II четверти, а функция косинус меньше нуля в этой четверти и 90° функцию меняет, т.е. косинус на синус.
$=-\frac{1}{2}$	Находим на тригонометрическом круге точку 30^0 и проецируем ее на ось ОУ (идем по пунктирной линии вправо до оси ОУ), находим значение $\frac{1}{2}$, не забывая о
	минусе перед функцией

б) Решение	<u>Пояснения</u>
$tg(-23,25\pi) =$	Т.к. функция тангенс нечетная, то $tg(-\alpha) = -tg(\alpha)$, а значит,
$=-tg(23,25\pi)=$	$tg(-23,25\pi) = -tg(23,25\pi)$
$= -tg(22\pi + 1,25\pi) =$	Т.к. через 2π значения всех тригонометрических функций повторяются, то и через 22π тоже повторятся.
	$(\pi + 0.25\pi)$ - это угол II четверти, а функция тангенс меньше
$= -tg(\pi + 0.25\pi) =$	нуля, и π функцию не меняет.
$= -(-tg\frac{\pi}{4}) =$	Т к. $tg\alpha = \frac{Sin\alpha}{Cos\alpha}$, то $tg\frac{\pi}{4} = Sin\frac{\pi}{4} \div Cos\frac{\pi}{4}$
$= tg\frac{\pi}{4} = Sin\frac{\pi}{4} \div Cos\frac{\pi}{4} =$	находим по тригонометрическому кругу значения $Sin\frac{\pi}{4}$ и
$=\frac{\sqrt{2}}{2} \div \frac{\sqrt{2}}{2} = 1$	$Cos\frac{\pi}{4}$ и вычисляем их отношение.

2) Пример Упростить выражение $Cos(\alpha - \frac{\pi}{2}) + Sin(\alpha - \pi) + tg^2(\pi - \alpha) + ctg^2(\alpha - \pi)$

2) Решение	<u>Пояснения</u>
$Cos(\alpha - \frac{\pi}{2}) = Cos\left(-(\frac{\pi}{2} - \alpha)\right)$	Чтобы воспользоваться формулой приведения, вынесем минус за скобочку.
$= Cos\left(\frac{\pi}{2} - \alpha\right) =$	Т.к. функция косинус четная, то $Cos(-\alpha) = Cos(\alpha)$, а значит, $Cos\left(-(\frac{\pi}{2}-\alpha)\right) = Cos\left(\frac{\pi}{2}-\alpha\right)$.
$= Sin \alpha$	$\left(\frac{\pi}{2} - \alpha\right)$ угол в I четверти, а косинус в первой четверти
	положителен и $\frac{\pi}{2}$ функцию меняет (т.е. косинус на синус)
$Sin(\alpha - \pi) = Sin(-(\pi - \alpha)) =$ = $-Sin(\pi - \alpha) =$	Чтобы воспользоваться формулой приведения, вынесем минус за скобочку.
$=-Sin \alpha$	Т.к. функция синус нечетная, то $Sin(-\alpha) = -Sin(\alpha)$, а значит, $Sin(-(\pi - \alpha)) = -Sin(\pi - \alpha)$.
Smα	$(\pi - \alpha)$ - угол II четверти, а синус положительный в этой четверти и π функцию не меняет.
$tg(\pi-\alpha)=tg\alpha$	$(\pi - \alpha)$ - это угол II четверти, а тангенс отрицательный в этой четверти и π функцию не меняет.
$ctg(\alpha-\pi)=ctg(-(\pi-\alpha))=$	Чтобы воспользоваться формулой приведения, вынесем минус за скобочку.
$=-ctg(\pi-\alpha)=$	Т.к. функция котангенс нечетная, то $ctg(-\alpha) = -ctg(\alpha)$, а значит $ctg(-(\pi - \alpha)) = -ctg(\pi - \alpha)$
$=-(-ctg\alpha)=$	$(\pi-lpha)$ - это угол II четверти, котангенс в этой четверти
$=-(-cig\alpha)=$ $=cig\alpha$	отрицательный и π функцию не меняет.
Подставим все найденные зна	чения в условие т.о.
π	•

$$Cos(\alpha - \frac{\pi}{2}) + Sin(\alpha - \pi) + tg^{2}(\pi - \alpha) + ctg^{2}(\alpha - \pi) =$$

$$= Sin\alpha - Sin\alpha + tg^{2}\alpha + ctg^{2}\alpha = tg^{2}\alpha + ctg^{2}\alpha$$

Тема 1.2. Тригонометрические уравнения.

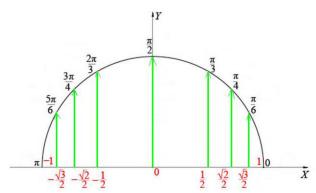
План изучения темы:

- 1. Понятие арккосинуса, арксинуса, арктангенса, арккотангенса.
- 2. Простейшие тригонометрические уравнения.
- 3. Тригонометрические уравнения, сводящиеся к квадратным.
- 4. Однородные тригонометрические уравнения первой и второй степени.

Арккосинус. Решение уравнения Cos x = a

Определение

Если $-1 \le a \le 1$, то арккосинусом числа a (arccos a) называют такое число из отрезка $[0,\pi]$ косинус которого равен a.



Используя тригонометрический круг (только I и II четверть) можно легко вычислить некоторые (табличные) значения арккосинуса.

Таблица 1

а	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
arccos a	π	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0

Свойство arccos a

 $\arccos(-a) = \pi - \arccos a$, $\partial e = 0 \le a \le 1$

Общее решение уравнения $Cos x = a$						
Если $ a > 1$, Если $-1 \le a \le 1$, то						
то уравнение не и	меет решения	$x = \pm \arccos a +$	$-2\pi n, n \in \mathbb{Z}$			
Частные случаи						
Cos x = 0 Cos x = 1 Cos x = -1						
$x = \frac{\pi}{2} + \pi n, n \in \mathbb{Z} $ (2.1)	$x = 2\pi n, n \in Z$	(2.2)	$x=\pi+2\pi n, n\in Z$	(2.3)		
2						

Примеры решения простейших тригонометрических уравнений относительно косинуса.

1) Пример Решить уравнение

$$\sqrt{2} \cos x = 1$$

1) Решение	<u>Пояснения</u>
$\sqrt{2} \cos x = 1$	Разделим обе части уравнения на $\sqrt{2}$
$\sqrt{2} \cos x = 1$ $\frac{\sqrt{2} \cos x}{\sqrt{2}} = \frac{1}{\sqrt{2}}$	
$Cos x = \frac{1 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}}$	Избавимся от иррациональности в знаменателе, для
	этого домножим и числитель и знаменатель на $\sqrt{2}$
$Cos x = \frac{\sqrt{2}}{2}$	
$x = \pm \arccos \frac{\sqrt{2}}{2} + 2\pi n, n \in \mathbb{Z}$	Воспользуемся формулой (1.)
$x = \pm \frac{\pi}{4} + 2\pi n, n \in \mathbb{Z}$	По Таблице 1 найдем значение $\arccos \frac{\sqrt{2}}{2} = \frac{\pi}{4}$

2) Пример Решить уравнение $\cos 2x - \frac{1}{2} = 0$

2) Решение	<u>Пояснения</u>
$Cos 2x - \frac{1}{2} = 0$	Перенесем $\frac{1}{2}$ в правую часть уравнения (не забыв
$Cos 2x = \frac{1}{2}$	поменять знак на противоположный)
$2x = \pm \arccos \frac{1}{2} + 2\pi n, n \in \mathbb{Z}$	Воспользуемся формулой (1)
$2x = \pm \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}$	По Таблице 1 найдем значение $\arccos \frac{1}{2} = \frac{\pi}{3}$
$\frac{2x}{2} = \pm \frac{\pi}{3 \cdot 2} + \frac{2\pi n}{2}, n \in \mathbb{Z}$	Разделим обе части уравнения на 2
$x = \pm \frac{\pi}{6} + \pi n, n \in \mathbb{Z}$	

3) Пример Решить уравнение $\frac{1}{6}Cos2x - \frac{1}{2} = 0$

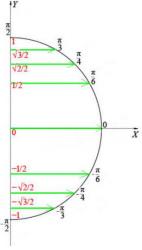
3) Решение	<u>Пояснения</u>
$\frac{1}{6}Cos2x-\frac{1}{3}=0$	Перенесем $\frac{1}{3}$ в правую часть уравнения (не забыв
	поменять знак на противоположный).
$\frac{1}{6}Cos2x = \frac{1}{3}$	Домножим обе части уравнения на 6.
$\frac{1\cdot 6}{6}Cos2x = \frac{1\cdot 6}{3}$	Т.к. 2>1, то уравнение не имеет решения.
Cos 2x = 2	
нет решений	

Арксинус. Решение уравнения Sin x = a

Определение

Если $-1 \le a \le 1$, то арксинусом числа a (arcsin a) называют такое число из отрезка

$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$
 синус которого равен a .



Используя тригонометрический круг (только I и IV четверть) можно легко вычислить некоторые (табличные) значения арксинуса.

Таблица 2 $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\sqrt{2}$ а -1 0 1 2 2 2 2 $\frac{\pi}{4}$ $\frac{\pi}{6}$ $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ arcsin a 0

Свойство arcsin a

 $\arcsin(-a) = -\arcsin a$

Общее решение уравнения $Sin x = a$						
Если $ a > 1$, Если $-1 \le a \le 1$, то						
то уравнение не имеет решения $x = (-1)^n$ arcsin $a + \pi n$, $n \in \mathbb{Z}$						
Частные случаи						
Sin x = 0	Sin x = 1		Sin x = -1			
$x = \pi n, n \in Z $ (4.1)	$x = \frac{\pi}{2} + 2\pi n, n$	$n \in Z$ (4.2)	$x = -\frac{\pi}{2} + 2\pi n, n \in Z$	(4.3)		

Примеры решения простейших тригонометрических уравнений относительно косинуса.

1) Пример Решить уравнение $\sqrt{2} \sin x = 1$

1) Решение	<u>Пояснения</u>
$\sqrt{2} \sin x = 1$	Разделим обе части уравнения на $\sqrt{2}$
$\frac{\sqrt{2} \sin x}{\sqrt{2}} = \frac{1}{\sqrt{2}}$ $\sin x = \frac{1 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}}$	Избавимся от иррациональности в знаменателе, для этого домножим и числитель и знаменатель на $\sqrt{2}$
$Sin x = \frac{\sqrt{2}}{2}$	Воспользуемся формулой (3.)
$x = (-1)^n \arcsin \frac{\sqrt{2}}{2} + \pi n, n \in \mathbb{Z}$	По Таблице 2 найдем значение $\arcsin \frac{\sqrt{2}}{2} = \frac{\pi}{4}$
$x = (-1)^n \frac{\pi}{4} + \pi n, n \in \mathbb{Z}$	

2) Пример Решить уравнение $Sin 2x - \frac{1}{2} = 0$

2) Решение	<u>Пояснения</u>
$Sin 2x - \frac{1}{2} = 0$	Перенесем $\frac{1}{2}$ в правую часть уравнения (не забыв
	поменять знак на противоположный)
1	Воспользуемся формулой (3)
$Sin 2x = \frac{1}{2}$ $2x = (-1)^n \arcsin \frac{1}{2} + \pi n, n \in \mathbb{Z}$	По Таблице 1 найдем значение $\arcsin \frac{1}{2} = \frac{\pi}{6}$
$2x = (-1)^n \frac{\pi}{6} + \pi n, n \in \mathbb{Z}$	Разделим обе части уравнения на 2
$\frac{2x}{2} = (-1)^n \frac{\pi}{6 \cdot 2} + \frac{\pi n}{2}, n \in \mathbb{Z}$	
$x=(-1)^n\frac{\pi}{12}+\frac{\pi n}{2}, n\in Z$	

3) Пример Решить уравнение $\frac{1}{6} Sin 2x - \frac{1}{2} = 0$

3) Решение	<u>Пояснения</u>
$\frac{1}{6}Sin 2x - \frac{1}{3} = 0$	Перенесем $\frac{1}{3}$ в правую часть уравнения (не забыв
$\frac{1}{6}Sin 2x = \frac{1}{3}$	поменять знак на противоположный).
$\frac{1\cdot 6}{6} \sin 2x = \frac{1\cdot 6}{3}$	Домножим обе части уравнения на 6.
Sin 2x = 2	Т.к. 2>1, то уравнение не имеет решения.
нет решений	

Арктангенс. Решение уравнения tgx = a

Определение

Арктангенсом числа $a\ (arctg\ a)$ называют такое число из промежутка $\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$ тангенс которого равен a .

Приведем некоторые (табличные) значения арктангенса.

Таблица 3

а	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{2}$	0	$\frac{\sqrt{3}}{2}$	1	$\sqrt{3}$
arctga	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$

Свойство arctga

arctg(-a) = -arctg a

Общее решение уравнения $tgx = a$				
$x = arctg a + \pi n, n \in \mathbb{Z}$				

Примеры решения простейших тригонометрических уравнений относительно тангенса.

1) Пример Решить уравнение $\sqrt{3} tgx = 1$

<u>1) Решение</u>	<u>Пояснения</u>
$\sqrt{3} tg x = 1$	Разделим обе части уравнения на $\sqrt{3}$
$\frac{\sqrt{3} tg x}{\sqrt{3}} = \frac{1}{\sqrt{3}}$	
$1\cdot\sqrt{3}$	Избавимся от иррациональности в знаменателе, для
$tg x = \frac{1 \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}}$	этого домножим и числитель и знаменатель на $\sqrt{3}$
$tg x = \frac{\sqrt{3}}{3}$	
$x = arctg \frac{\sqrt{3}}{3} + \pi n, n \in \mathbb{Z}$	Воспользуемся формулой (5)
$x = +\pi n, n \in Z$	По Таблице 3 найдем значение $arctg \frac{\sqrt{3}}{3} =$

2) Пример Решить уравнение tg 2x - 1 = 0

2) Решение	<u>Пояснения</u>
tg 2x - 1 = 0 $tg 2x = 1$	Перенесем 1 в правую часть уравнения (не забыв поменять знак на противоположный)
$2x = arctg1 + \pi n, n \in \mathbb{Z}$	Воспользуемся формулой (5)
$2x = \frac{\pi}{4} + \pi n, n \in \mathbb{Z}$	По Таблице 3 найдем значение $arctg1 = \frac{\pi}{4}$
$\frac{2x}{2} = \frac{\pi}{4 \cdot 2} + \frac{\pi n}{2}, n \in \mathbb{Z}$	Разделим обе части уравнения на 2
$x = \frac{\pi}{8} + \frac{\pi n}{2}, n \in \mathbb{Z}$	

3) Пример Решить уравнение $\frac{1}{6}tg\,2x-\frac{1}{2}=0$

3) Решение	<u>Пояснения</u>
$\frac{1}{6}tg2x-\frac{1}{3}=0$	Перенесем $\frac{1}{3}$ в правую часть уравнения (не забыв
$\frac{1}{6}tg2x = \frac{1}{3}$	поменять знак на противоположный).
$\frac{1\cdot 6}{6}tg2x = \frac{1\cdot 6}{3}$	Домножим обе части уравнения на 6.
$tg 2x = 2$ $2x = arctg 2 + \pi n, n \in Z$	
$x = \frac{\operatorname{arctg} 2}{2} + \frac{\pi n}{2}, n \in \mathbb{Z}$	Воспользуемся формулой (5), т.к. arctg 2 не
$x = \frac{1}{2} + \frac{1}{2}, n \in \mathbb{Z}$	табличное значение, оставим его без вычислений.

Арккотангенс. Решение уравнения ctgx = a

Определение

Арккотангенсом числа a (arcctga) называют такое число из промежутка $(0;\pi)$ котангенс которого равен a.

Приведем некоторые (табличные) значения арккотангенса.

Таблица 4

а	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$
arctga	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$

Свойство агсседа

 $arcctg(-a) = \pi - arcctg a$

Общее решение уравнения $ctg x = a$	(6)
$x = arcctg a + \pi n, n \in \mathbb{Z}$	

Примеры решения простейших тригонометрических уравнений относительно котангенса.

1) Пример Решить уравнение $\sqrt{3} ctgx = 1$

<u>1) Решение</u>	<u>Пояснение</u>
$\sqrt{3} \operatorname{ctg} x = 1$	Разделим обе части уравнения на $\sqrt{3}$
$\frac{\sqrt{3} \operatorname{ctg} x}{\sqrt{3}} = \frac{1}{\sqrt{3}}$	
$ctg x = \frac{1 \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}}$	Избавимся от иррациональности в знаменателе, для этого домножим и числитель и знаменатель на $\sqrt{3}$
$ctg x = \frac{\sqrt{3}}{3}$	этого домножим и числитель и знаменатель на уз
$x = arcctg \frac{\sqrt{3}}{3} + \pi n, n \in Z$	Воспользуемся формулой (6)
$x = \frac{\pi}{3} + \pi n, n \in \mathbb{Z}$	По Таблице 4 найдем значение $arcctg \frac{\sqrt{3}}{3} =$

Простейшие тригонометрические уравнения

1) Пример Решить уравнение $Sin x = \frac{1}{2}$

<u>1) Решение</u>	<u>Пояснение</u>
$Sin x = \frac{1}{2}$	Воспользуемся формулой $Sin x = a$
$2x = (-1)^n \arcsin\left(\frac{1}{2}\right) + \pi n, \ n \in \mathbb{Z}$	Если $-1 \le a \le 1$, то $x = (-1)^n \arcsin a + \pi n$, $n \in \mathbb{Z}$
$2x = (-1)^n \frac{\pi}{6} + \pi n, n \in \mathbb{Z}$	По таблице арксинусов найдем значение $\arcsin\left(\frac{1}{2}\right) = \frac{\pi}{6}$
$\frac{2x}{2} = (-1)^n \frac{\pi}{6 \cdot 2} + \frac{\pi n}{2}, n \in \mathbb{Z}$ $x = (-1)^n \frac{\pi}{12} + \frac{\pi n}{2}, n \in \mathbb{Z}$	Разделим обе части уравнения на 2

2) Пример Решить уравнение $-2Cos\frac{2}{3}x = \sqrt{2}$

2) Решение	<u>Пояснение</u>
$-2Cos\frac{2}{3}x = \sqrt{2}$	Разделим обе части уравнения на (-2)
$\cos\frac{2}{3}x = -\frac{\sqrt{2}}{2}$	Воспользуемся формулой $Cos x = a$
$\frac{2}{3}x = \pm \arccos\left(-\frac{\sqrt{2}}{2}\right) + 2\pi n, n \in \mathbb{Z}$	Если $-1 \le a \le 1$, то $x = \pm \arccos a + 2\pi n$, $n \in \mathbb{Z}$
	По таблице арккосинусов найдем значение
$\frac{2}{3}x = \pm \frac{3\pi}{4} + 2\pi n, n \in \mathbb{Z}$	$\arccos\left(-\frac{\sqrt{2}}{2}\right) = \frac{3\pi}{4}$
$\frac{3}{2} \cdot \frac{2}{3} x = \pm \frac{3 \cdot 3\pi}{2 \cdot 4} + \frac{3}{2} \cdot 2\pi n, n \in \mathbb{Z}$	Домножим обе части уравнения на $\frac{3}{2}$, выполним сокращения и умножения.
$x = \pm \frac{9\pi}{8} + 3\pi n, n \in \mathbb{Z}$	

3) Пример Решить уравнение $3tg\left(4x - \frac{\pi}{6}\right) = \sqrt{3}$

3) Решение	<u>Пояснение</u>
$3tg\left(4x-\frac{\pi}{6}\right)=\sqrt{3}$	Разделим обе части уравнения на 3
$tg\left(4x - \frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}$	Воспользуемся формулой $tgx = a$
(),	$x = arctg a + \pi n, n \in \mathbb{Z}$
$4x - \frac{\pi}{6} = arctg\left(\frac{\sqrt{3}}{3}\right) + \pi n, \ n \in \mathbb{Z}$	По таблице арктангенсов найдем значение $arctg\left(\frac{\sqrt{3}}{3}\right) = \frac{\pi}{6}$
$4x - \frac{\pi}{6} = \frac{\pi}{6} + \pi n, n \in \mathbb{Z}$	Перенесем $-\frac{\pi}{6}$ в правую часть уравнения, не забыв
	поменять знак на противоположный.
$4r = \pi + \pi$	Выполним действие «сумма дробей» - числители
$4x = \frac{\pi}{6} + \frac{\pi}{6} + \pi n, \ n \in \mathbb{Z}$	суммируем, записываем в числитель, знаменатели
	суммируем, записываем в знаменатель.
$4x = \frac{2\pi}{6} + \pi n, n \in \mathbb{Z}$	Сокращаем на 2 дробь $\frac{2\pi}{6}$, - делим и числитель и
	знаменатель на 2.

$$4x = \frac{\pi}{3} + \pi n, n \in \mathbb{Z}$$

$$\frac{4x}{4} = \frac{\pi}{4 \cdot 3} + \frac{\pi n}{4}, n \in \mathbb{Z}$$

$$x = \frac{\pi}{12} + \frac{\pi n}{4}, n \in \mathbb{Z}$$

Разделим левую и правую части уравнения на 4.

4) Пример Решить уравнение $2Cos\left(\frac{x}{2} - \frac{\pi}{6}\right) = \sqrt{3}$

4) Решение Пояснение Разделим обе части уравнения на 2. $2Cos\left(\frac{x}{2} - \frac{\pi}{6}\right) = \sqrt{3}$ $Cos\left(\frac{x}{2} - \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$ Воспользуемся формулой Cos x = aЕсли $-1 \le a \le 1$, то $x = \pm \arccos a + 2\pi n$, $n \in \mathbb{Z}$ $\frac{x}{2} - \frac{\pi}{6} = \pm \arccos\left(\frac{\sqrt{3}}{2}\right) + 2\pi n, n \in \mathbb{Z}$ По таблице арккосинусов найдем значение $\frac{x}{2} - \frac{\pi}{6} = \pm \frac{\pi}{6} + 2\pi n, n \in \mathbb{Z}$ $\arccos\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}$ Т.к. в решении присутствует $\pm \frac{\pi}{6}$, то рассмотрим 1) $\frac{x}{2} = \frac{\pi}{6} + \frac{\pi}{6} + 2\pi n, n \in \mathbb{Z}$ два случая: в первом оставляем в решении $+\frac{\pi}{6}$ и во $\frac{x}{2} = \frac{2\pi}{6} + 2\pi n, n \in \mathbb{Z}$ втором оставляем $-\frac{\pi}{6}$ $\frac{x}{2} = \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}$ $\frac{2x}{2} = \frac{2\pi}{3} + 2 \cdot 2\pi n, n \in \mathbb{Z}$ $x=\frac{2\pi}{3}+4\pi n,\,n\in Z$ 2) $\frac{x}{2} = \frac{\pi}{6} - \frac{\pi}{6} + 2\pi n, n \in \mathbb{Z}$ $\frac{x}{2}=2\pi n, n\in \mathbb{Z}$ $x = 4\pi n, n \in \mathbb{Z}$

2) Пример Решить уравнение c tg 2x - 1 = 0

2) Решение	<u>Пояснение</u>
ctg 2x - 1 = 0	Перенесем 1 в правую часть уравнения (не забыв
ctg 2x = 1	поменять знак на противоположный)
$2x = arcctg\ 1 + \pi n, n \in Z$	Воспользуемся формулой (6)
$2x = \frac{\pi}{4} + \pi n, n \in \mathbb{Z}$	По Таблице 4 найдем значение $arcctg1 = \frac{\pi}{4}$
$\frac{2x}{2} = \frac{\pi}{4 \cdot 2} + \frac{\pi n}{2}, n \in \mathbb{Z}$	Разделим обе части уравнения на 2
$x = \frac{\pi}{8} + \frac{\pi n}{2}, n \in \mathbb{Z}$	

3) Пример Решить уравнение $\frac{1}{6}ctg\,2x-\frac{1}{2}=0$

3) Решение	<u>Пояснение</u>
$\frac{1}{6}ctg2x - \frac{1}{3} = 0$	Перенесем $\frac{1}{3}$ в правую часть уравнения (не забыв
$\frac{1}{6}ctg2x = \frac{1}{3}$	поменять знак на противоположный).
	Домножим обе части уравнения на 6.
$\frac{1\cdot 6}{6}ctg2x = \frac{1\cdot 6}{3}$	
ctg 2x = 2	
$2x = arcctg 2 + \pi n, n \in \mathbb{Z}$	Воспользуемся формулой (6), т.к. arcctg 2 не
$x = \frac{\operatorname{arcctg} 2}{2} + \frac{\pi n}{2}, n \in \mathbb{Z}$	табличное значение, оставим его без вычислений.

Тригонометрические уравнения, приводимые к квадратным

1) Пример Решить уравнение $Cos^2x - 2Cos x - 3 = 0$

1) Решение	<u>Пояснение</u>
$\cos^2 x - 2\cos x - 3 = 0$	Заменим в уравнении <i>Cos x на y</i> , в
$\Pi y cm$ ь $Cos x = y$,	результате получим квадратное уравнение,
тогда уравнение примет вид	решим его используя формулу
$y^2 - 2y - 3 = 0$	дискриминанта и корней.
a = 1; b = -2; c = -3	
$D = b^{2} - 4ac = (-2)^{2} - 4 \cdot 1 \cdot (-3) = 4 + 12 = 16$	
$y_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-2) \pm \sqrt{16}}{2 \cdot 1} = \frac{2 \pm 4}{2}$	
$y_1 = \frac{2+4}{2} = \frac{6}{2} = 3;$	
$y_2 = \frac{2-4}{2} = \frac{-2}{2} = -1;$	
$npu y_1 = 3 Cos \ x = 3,$	Сделаем обратную замену, т.е. в строке
т.к. 3 > 1, то уравнение	«Пусть» вместо у подставим его первое
не имеет решений	значение, получим уравнение $Cos x = 3$, оно
	не имеет решения, т.к. $-1 \le Cos x \le 1$

$npu y_2 = -1 Cos \ x = -1,$	Теперь в строке «Пусть» вместо у
это частный случай	подставим его второе значение, получим
$x = \pi + 2\pi n, n \in Z$	уравнение $Cos x = -1$, это частный случай,
Omsem: $x = \pi + 2\pi n, n \in Z$	запишем его решение

Однородные тригонометрические уравнения

Определение:

уравнения вида $a \, Sin \, x + b \, Cos \, x = 0 \quad (a \neq 0, b \neq 0)$ называются однородными первой степени относительно $Sin \, x$ и $Cos \, x$.

Способ решения:

Разделим почленно на $Cos x \neq 0$, в результате получается уравнение

$$\frac{a \sin x}{\cos x} + \frac{b \cos x}{\cos x} = 0 \quad (a \neq 0, b \neq 0)$$

a tg x + b = 0

А это уже простейшее тригонометрическое уравнение.

Пример решения однородного тригонометрического уравнения первой степени относительно Sin x и Cos x.

Пример Решить уравнение $\sqrt{3}Sin x + 3Cos x = 0$

<u>Решение</u>	<u>Пояснение</u>
$\sqrt{3}Sin \ x + 3Cos \ x = 0$	Разделим почленно уравнение на $Cos x \neq 0$.
$\frac{\sqrt{3}Sin x}{Cos x} + \frac{3Cos x}{Cos x} = 0$	Преобразуем уравнение, помня, что $\frac{Sin x}{Cos x} = tg x$
$\sqrt{3}tg \ x + 3 = 0$ $\sqrt{3}tg \ x = -3$	Перенесем 3 в правую часть равенства, не забыв поменять знак на противоположный.
$tg x = -\frac{3}{\sqrt{3}}$	Разделим правую и леву часть равенства на $\sqrt{3}$
$tg x = -\frac{3 \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}}$ $3 \cdot \sqrt{3}$	Избавимся от иррациональности в знаменателе, для этого и числитель и знаменатель домножим на $\sqrt{3}$. Вспомним, что $\sqrt{3} \cdot \sqrt{3}$.
$tg x = -\frac{3 \cdot \sqrt{3}}{3}$ $tg x = -\sqrt{3}$	Воспользуемся формулой
$x = arctg(-\sqrt{3}) + \pi n, n \in \mathbb{Z}$	$tgx = a$ $x = arctg a + \pi n, n \in \mathbb{Z}$
$x = -\frac{\pi}{3} + \pi n, n \in \mathbb{Z}$	Используя таблицу арктангенсов, вычислим значение $arctg\left(-\sqrt{3}\right) = -\frac{\pi}{3}$

Определение:

Уравнения вида $a Sin^2 f(x) + b Sin f(x) Cos f(x) + c Cos^2 f(x) = 0 \quad (a \neq 0, b \neq 0)$ Называются однородными тригонометрическими уравнениями второй степени относительно Sin f(x) и Cos f(x).

Способ решения

Разделим почленно на $Cos^2 x \neq 0$, в результате получается уравнение

$$\frac{a \sin^2 f(x)}{\cos^2 f(x)} + \frac{b \sin f(x) \cos f(x)x}{\cos f(x)} + \frac{c \cos^2 f(x)x}{\cos^2 f(x)} = 0 \quad (a \neq 0, b \neq 0)$$

$$a t g^2 f(x) + b t g f(x) + c = 0$$

Это тригонометрическое уравнение, которое сводится к квадратному $at^2 + bt + c = 0$ путем

замены tg f(x) = t

Пример решения однородного тригонометрического уравнения первой степени относительно $Sin\ f(x)$ и $Cos\ f(x)$.

Пример Решить уравнение $2Sin^2x - 5Sin x Cos x + 3Cos^2 x = 0$

<u>Решение</u>	<u>Пояснение</u>
$2Sin^2x - 5Sin \times Cos \times + 3Cos^2 \times = 0$	Почленно разделим уравнение на $Cos^2 x \neq 0$.
$\frac{2Sin^2x}{Cos^2x} - \frac{5Sin xCos x}{Cos x} + \frac{3Cos^2x}{Cos x} = 0$	Преобразуем уравнение, помня, что $\frac{Sin x}{Cos x} = tg x, \text{ а значит } \frac{Sin^2 x}{Cos^2 x} = tg^2 x$
$2tg^2x - 5tg x + 3 = 0$ Пусть $tg x = y$, тогда $2y^2 - 5y + 3 = 0$	Сделаем замену: $tgx = y$, в результате получили квадратное уравнение, решаем его, используя формулу дискриминанта и корней.
a = 2; $b = -5$; $c = 3D = b^2 - 4ac = (-5)^2 - 4 \cdot 2 \cdot 3 = 25 - 24 = 1$	
$y_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{5 \pm \sqrt{1}}{2 \cdot 2} = \frac{5 \pm 1}{4}$	
$y_{1} = \frac{5+1}{4} = \frac{6}{4} = \frac{3}{2}$ $y_{2} = \frac{5-1}{4} = \frac{4}{4} = 1$	Получив корни квадратного уравнения делаем обратную замену: в той строке, где делали замену (строка «Пусть») вместо у
2 4 4 Сделаем обратную замену	подставляем первое найденное значение, т.е.
$npu y_1 = \frac{3}{2} nonyuum$	$y_1 = \frac{3}{2}$. Воспользуемся формулой $tgx = a$
$tg x = \frac{3}{2}$	$x = arctg a + \pi n, n \in \mathbb{Z}$ Т.к. $arctg \frac{3}{2}$ не табличное значение, оставим его без вычислений.
$x_{1} = \operatorname{arctg} \frac{3}{2} + \pi n, n \in \mathbb{Z}$	В той строке, где делали замену (строка «Пусть») вместо y подставляем первое найденное значение, т.е. $y_2 = 1$.
npu $y_2 = 1$ $nonyчим$ $tg x = 1$	Воспользуемся формулой $tgx = a$ $x = arctg \ a + \pi n, n \in \mathbb{Z}$ Используя таблицу арктангенсов, вычислим
$x_2 = arctg1 + \pi n, n \in \mathbb{Z}$	значение $arctg1 = \frac{\pi}{4}$.
$x=\frac{\pi}{4}+\pi n, n\in Z$	
Omsem: $arctg \frac{3}{2} + \pi n; \frac{\pi}{4} + \pi n, n \in \mathbb{Z}$	

2) Пример Решить уравнение $2Sin x + Cos^2 x + 2 = 0$

2) Решение Пояснение $2Sin x + Cos^2 x + 2 = 0$ Воспользуемся формулой $Cos^2x = 1 - Sin^2x$, $2Sin x + (1 - Sin^2 x) + 2 = 0$ Приведем подобные слагаемые $2Sin x + 1 - Sin^2 x + 2 = 0$ $2Sin x - Sin^2 x + 3 = 0$ Переставим члены уравнения по старшинству $-Sin^2x + 2Sin x + 3 = 0$ степеней. Пусть Sin x = y, Заменим в уравнении Sin x нa y, в результате тогда уравнение примет вид получим квадратное уравнение, решим его $-y^2 + 2y + 3 = 0$ используя формулу дискриминанта и корней. a = -1; b = 2; c = 3 $D = b^2 - 4ac = 2^2 - 4 \cdot (-1) \cdot 3 = 4 + 12 = 16$ $y_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-2 \pm \sqrt{16}}{2 \cdot (-1)} = \frac{-2 \pm 4}{-2}$ $y_1 = \frac{-2+4}{-2} = \frac{2}{-2} = -1;$ $y_2 = \frac{-2-4}{-2} = \frac{-6}{-2} = 3.$ Сделаем обратную замену, т.е. в строке $\Pi pu \ y_1 = -1 \quad Sin \ x = -1$ «Пусть» вместо у подставим его первое это частный случай значение, получим уравнение Sin x = -1, это $x = -\frac{\pi}{2} + 2\pi n, \quad n \in \mathbb{Z}$ частный случай, запишем его решение. Теперь в строке «Пусть» вместо у подставим $\Pi pu \ y_2 = 3 \quad Sin \ x = 3$ его второе значение, получим уравнение m.к. 3 > 1, то уравнение Sin x = 3, оно не имеет решения, т.к. не имеет решение $-1 \le Sin \ x \le 1$ Omsem: $x = -\frac{\pi}{2} + 2\pi n$, $n \in \mathbb{Z}$

Тема 1.3. Преобразования тригонометрических выражений.

План изучения темы

- 1. Формулы суммы и разности одноименных тригонометрических функций.
- 2. Формулы сложения тригонометрических функций
- 3. Формулы двойного угла тригонометрических функций.
- 4. Формулы половинного угла тригонометрических функций.

Формулы суммы и разности одноименных тригонометрических функций.

21 P 21 P	1
$Sin \alpha + Sin \beta = 2 Sin \frac{\alpha + \beta}{2} Cos \frac{\alpha - \beta}{2}$	1.1.
$Sin \alpha - Sin \beta = 2 Sin \frac{\alpha - \beta}{2} Cos \frac{\alpha + \beta}{2}$	1.2.
$\cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}$	1.3.
$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$	1.4.
$tg \alpha + tg \beta = \frac{Sin(\alpha + \beta)}{Cos \alpha Cos \beta}$	1.5.
$\alpha \neq \frac{\pi}{2} + \pi k, \beta \neq \frac{\pi}{2} + \pi n, k \in \mathbb{Z}, n \in \mathbb{Z}$	
$tg \alpha - tg \beta = \frac{Sin(\alpha - \beta)}{Cos \alpha Cos \beta}$	1.6.
$\alpha \neq \frac{\pi}{2} + \pi k, \beta \neq \frac{\pi}{2} + \pi n, k \in \mathbb{Z}, n \in \mathbb{Z}$	
$ctg \alpha + ctg \beta = \frac{Sin(\alpha + \beta)}{Sin \alpha Sin \beta}$	1.7.
$\alpha \neq \pi k, \beta \neq \pi n, k \in \mathbb{Z}, n \in \mathbb{Z}$	
$ctg \alpha - ctg \beta = \frac{Sin(\alpha - \beta)}{Sin \alpha Sin \beta}$	1.8.
$\alpha \neq \pi k, \beta \neq \pi n, k \in \mathbb{Z}, n \in \mathbb{Z}$	

Примеры использования формул суммы и разности одноименных тригонометрических функций.

1) Пример Решить уравнение Sin 5x + Sin x = 0

1) Решение	<u>Пояснение</u>
Sin 5x + Sin x = 0	Воспользуемся формулой (1.1.)
$2Sin\frac{5x+x}{2}Cos\frac{5x-x}{2}=0$	Приведем подобные слагаемые
2Sin 3x Cos 2x = 0	Произведение равно нулю тогда, когда хотя бы
2Sin 3x = 0 unu Cos 2x = 0	один из множителей равен нулю.
$3x = \pi n, n \in \mathbb{Z} \qquad 2x = \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$	Решим отдельно каждое простейшее
$x = \frac{\pi}{3}n, n \in \mathbb{Z} \qquad x = \frac{\pi}{4} + \frac{\pi n}{2}, n \in \mathbb{Z}$	тригонометрическое уравнение
<i>Ombem</i> : $x = \frac{\pi}{3}n, n \in \mathbb{Z}; \ x = \frac{\pi}{4} + \frac{\pi n}{2}, n \in \mathbb{Z}$	

2) Пример Решить уравнение Cos 3x = Sin x

2) Решение	<u>Пояснение</u>
Cos 3x = Sin x	Перенесем Sin x в правую часть не забыв
Cos 3x - Sin x = 0	поменять знак на противоположный.
π	Воспользуемся формулой приведения,
$Cos 3x - Cos(\frac{\pi}{2} - x) = 0$	чтобы свести к одной тригонометрической
$-2Sin\frac{\left(3x+\left(\frac{\pi}{2}-x\right)\right)}{Sin}\frac{\left(3x-\left(\frac{\pi}{2}-x\right)\right)}{Sin}=0$	функции косинус.
$2 \qquad 2$ $-2Sin\left(x+\frac{\pi}{4}\right)Sin\left(2x-\frac{\pi}{4}\right)=0$	Воспользуемся формулой (1.4.)
$Sin\left(x + \frac{\pi}{4}\right) = 0 \qquad unu Sin\left(2x - \frac{\pi}{4}\right) = 0$	Произведение равно нулю, когда хотя бы один из множителей равен нулю.
$\left(x + \frac{\pi}{4}\right) = \pi n, n \in Z \left(2x - \frac{\pi}{4}\right) = \pi n, n \in Z$	Решим каждое из простейших
$x = -\frac{\pi}{4} + \pi n, n \in Z \qquad 2x = \frac{\pi}{4} + \pi n, n \in Z$	тригонометрических уравнений (каждое из
$x = \frac{\pi}{8} + \frac{\pi n}{2}, n \in \mathbb{Z}$	них является частным случаем для
$Omsem: x = -\frac{\pi}{4} + \pi n, n \in \mathbb{Z}$	уравнения с синусом)
$x = \frac{\pi}{8} + \frac{\pi n}{2}, n \in \mathbb{Z}$	

Формулы сложения тригонометрических функций

Формулы сложения тригонометрических функции	
$Sin(\alpha + \beta) = Sin \alpha Cos \beta + Cos \alpha Sin \beta$	2.1.
$Sin(\alpha - \beta) = Sin \alpha Cos \beta - Cos \alpha Sin \beta$	2.2.
$Cos(\alpha + \beta) = Cos \alpha Cos \beta - Sin \alpha Sin \beta$	2.3.
$Cos(\alpha - \beta) = Cos \alpha Cos \beta + Sin \alpha Sin \beta$	2.4.
$tg(\alpha + \beta) = \frac{tg \alpha + tg \beta}{1 - tg \alpha tg \beta}$	2.5.
$tg(\alpha - \beta) = \frac{tg \alpha - tg \beta}{1 + tg \alpha tg \beta}$	2.6.
$ctg(\alpha + \beta) = \frac{1 - tg \alpha tg \beta}{tg \alpha + tg \beta}$	2.7.
$ctg(\alpha - \beta) = \frac{1 + tg \alpha tg \beta}{tg \alpha - tg \beta}$	2.8.
$\int dg \alpha - tg \beta$	

Примеры применения формул сложения

1) Пример Вычислить *Sin* 105°;

1) Решение	<u>Пояснение</u>
$Sin 105^{\circ} = Sin (60^{\circ} + 45^{\circ}) =$	Представим 105^0 в виде суммы 60^0+45^0 ,
$= Sin 60^{\circ} Cos 45^{\circ} + Sin 45^{\circ} Cos 60^{\circ} =$	применим формулу (2.1.).
$\sqrt{3}$ $\sqrt{2}$ $\sqrt{2}$ 1	По тригонометрическому кругу вычислим
$=\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\cdot\frac{1}{2}=$	$Sin 60^{\circ} = \frac{\sqrt{3}}{2}; Cos 45^{\circ} = \frac{\sqrt{2}}{2};$
	$Sin 45^{\circ} = \frac{\sqrt{2}}{2}; Cos 60^{\circ} = \frac{1}{2}$
$=\frac{\sqrt{2}}{2}\left(\sqrt{3}+1\right)$	Вынесем $\frac{\sqrt{2}}{2}$ за скобочку.

2) Пример Вычислить *tg*15°

2) Решение	<u>Пояснение</u>
$tg15^{\circ} = tg(45^{\circ} - 30^{\circ}) = \frac{tg45^{\circ} - tg30^{\circ}}{1 + tg45^{\circ} tg30^{\circ}} =$	Представим 15^0 в виде разности 45^0 и 30^0 , затем
1	воспользуемся формулой (2.6.).
$= \frac{1 - \frac{\sqrt{3}}{3}}{1 + 1 \cdot \frac{\sqrt{3}}{3}} =$, n
$=\frac{3}{\sqrt{3}}=$	Вычислим
$1+1\cdot\frac{\sqrt{3}}{3}$	$tg45^{\circ} = 1;$
	$tg45^{\circ} = 1;$ $tg30^{\circ} = \frac{\sqrt{3}}{3}$
$= \frac{\frac{3}{3} - \frac{\sqrt{3}}{3}}{\frac{3}{3} + \frac{\sqrt{3}}{3}} = \frac{\frac{3 - \sqrt{3}}{3}}{\frac{3 + \sqrt{3}}{3}} =$	3
$=\frac{3}{3}\frac{3}{\sqrt{3}}=\frac{3}{3+\sqrt{3}}=$	
$\frac{3}{3} + \frac{\sqrt{3}}{3} = \frac{3 + \sqrt{3}}{3}$	Приведем дроби к общему знаменателю 3.
$=\frac{3-\sqrt{3}}{3} \div \frac{3+\sqrt{3}}{3} = \frac{3-\sqrt{3}}{3} \cdot \frac{3}{3+\sqrt{3}} =$	
3 3 3 4 3	Домножим и числитель и знаменатель на одно и
$= \frac{(3-\sqrt{3})}{(3+\sqrt{3})} = \frac{(3-\sqrt{3})\cdot(3-\sqrt{3})}{(3+\sqrt{3})\cdot(3-\sqrt{3})} =$	то же выражение $(3-\sqrt{3})$.
$= \frac{9 - 2 \cdot 3 \cdot \sqrt{3} + 3}{9 - (\sqrt{3})^3} = \frac{12 - 6\sqrt{3}}{9 - 3} =$	В числителе формула «квадрат суммы», в
	знаменателе формула «разность квадратов».
$=\frac{12-6\sqrt{3}}{6}=2-\sqrt{3}$	Каждое из слагаемых в числителе разделим на 6.

3) Пример Решить уравнение $Sin\left(\frac{\pi}{3} - x\right) + Cos\left(\frac{\pi}{6} - x\right) = \sqrt{3}$

(3)	
<u>3) Решение</u>	<u>Пояснение</u>
$Sin\left(\frac{\pi}{3} - x\right) + Cos\left(\frac{\pi}{6} - x\right) = \sqrt{3}$	Воспользуемся формулами (2.2.) и
$\left(3\right)^{1}\left(3\right)^{2}\left(6\right)^{2}$	(2.4.).
$\left(Sin\frac{\pi}{3}Cosx - Cos\frac{\pi}{3}Sinx\right) + \left(Cos\frac{\pi}{6}Cosx + Sin\frac{\pi}{6}Sinx\right) = \sqrt{3}$	
	С помощью тригонометрического
$\left(\frac{\sqrt{3}}{2}Cos x - \frac{1}{2}Sin x\right) + \left(\frac{\sqrt{3}}{2}Cos x + \frac{1}{2}Sin x\right) = \sqrt{3}$	круга вычислим значения
	$Sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}, \ Cos\frac{\pi}{3} = \frac{1}{2},$
$\frac{\sqrt{3}}{2}Cosx - \frac{1}{2}Sinx + \frac{\sqrt{3}}{2}Cosx + \frac{1}{2}Sinx = \sqrt{3}$	$Cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$, $Sin\frac{\pi}{6} = \frac{1}{2}$.
$2 \cdot \frac{\sqrt{3}}{2} Cos x = \sqrt{3}$ $\sqrt{3} Cos x = \sqrt{3}$	Приведем подобные слагаемые.
Cos x = 1	Обе части уравнения разделим на
$x=2\pi n, n\in Z$	$\sqrt{3}$.
$Omeem: x = 2\pi n, n \in Z$	Получили частный случай
	уравнения с косинусом.

Формула двойного угла

± opinysia gbonnoro yrsia			
$Sin 2\alpha = 2Sin \alpha Cos \alpha$	3.1.		
$Cos 2\alpha = Cos^2\alpha - Sin^2\alpha$	3.2.		
$\cos 2\alpha = 1 - 2\sin^2 \alpha$	3.3.		
$Cos 2\alpha = 2Cos^2\alpha - 1$	3.4.		
$Sin^2\alpha = \frac{1 - Cos2\alpha}{2}$	3.5.		
$Cos^2\alpha = \frac{1 + Cos 2\alpha}{2}$	3.6.		
$tg2\alpha=\frac{2tg\alpha}{1-tg^2\alpha},$	3.7.		
$\alpha \neq \frac{\pi}{4} + \frac{\pi k}{2}, k \in \mathbb{Z} \alpha \neq \frac{\pi}{2} + \pi m, m \in \mathbb{Z}$			

Примеры использования формул двойного угла к решению задач.

1) Пример Доказать тождество $1 + Sin2x = (Cos x + Sin x)^2$

i) iipiiiiop genaemis renigerise	,
1) Решение	<u>Пояснение</u>
$1 + Sin2x = (Cos x + Sin x)^2$	Воспользуемся формулой $1 = Sin^2\alpha + Cos^2\alpha$ и
$(Cos^2 x + Sin^2 x) + (2Sin x Cos x) = (Cos x + Sin x)^2$	формулой (3.1.)
$Cos^{2} x + Sin^{2} x + 2Sin x Cos x = (Cos x + Sin x)^{2}$	Раскроем скобки и переставим слагаемые.
$Cos^{2} x + 2Sin x Cos x + Sin^{2} x = (Cos x + Sin x)^{2}$	В левой части равенства – формула
$(\cos x + \sin x)^2 = (\cos x + \sin x)^2$	сокращенного умножения – квадрат суммы.
верное равенство	

2) Пример Вычислить: $Cos^2 \frac{\pi}{8} - Sin^2 \frac{\pi}{8}$

2) Решение	<u>Пояснение</u>
$Cos^2 \frac{\pi}{8} - Sin^2 \frac{\pi}{8} = Cos2 \cdot \frac{\pi}{8} =$	Воспользуемся формулой (3.2.) справа на лево. Сократим 2 и 8.
$= Cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$	Вычислим с помощью тригонометрического круга $Cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$

Тригонометрические функции половинного аргумента

$Cos x = 1 - 2 Sin^2 \frac{x}{2}$	4.1.
$Cos x = 2Cos^2 \frac{x}{2} - 1$	4.2.
$Sin\frac{x}{2} = \pm \sqrt{\frac{1 - Cos x}{2}}$	4.3.
$Cos\frac{x}{2} = \pm \sqrt{\frac{1 + Cos x}{2}}$	4.4.
$tg\frac{x}{2} = \pm \sqrt{\frac{1 - Cos x}{1 + Cos x}}$	4.5.
$tg\frac{x}{2} = \frac{Sin x}{1 + Cos x}$	4.6.
$tg\frac{x}{2} = \frac{1 - Cos x}{Sin x}$	4.7.

Пример использования формул половинного угла Вычислить $tg112^{\circ}30'$

<u>Решение</u>	<u>Пояснение</u>	
$tg112^{\circ}30' = tg\frac{225^{\circ}}{2} =$	Представим $112^{\circ}30' = \frac{225^{\circ}}{2}$.	
$= \frac{1 - \cos 225^{\circ}}{\sin 225^{\circ}} =$ $= \frac{1 - \cos (180^{\circ} + 45^{\circ})}{\sin (180^{\circ} + 45^{\circ})} =$	Воспользуемся формулой (4.5.).	
$= \frac{Sin (180^{\circ} + 45^{\circ})}{Sin (180^{\circ} + 45^{\circ})} = \frac{1 - (-Cos 45^{\circ})}{-Sin 45^{\circ}} = \frac{1 + Cos 45^{\circ}}{-Sin 45^{\circ}} = 1 + C$	Представим $225^0=180^0+45^0$, чтобы применить формулы приведения.	
	$Cos(180^{\circ} + 45^{\circ}) = -Cos45^{\circ}$, т.к. $(180^{\circ} + 45^{\circ})$ - это	
$=-\frac{1+\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=$	угол III четверти, а функция косинус меньше нуля в этой четверти и 180° функцию не меняет, $Sin(180^{\circ}+45^{\circ})=-Sin45^{\circ}$, т.к. $(180^{\circ}+45^{\circ})$ - это угол	
1 7	III четверти, а функция синус меньше нуля в этой четверти и 180° функцию не меняет,	
$=\frac{\frac{2}{2} + \frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = -\frac{\frac{2 + \sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} =$	Вычислим по тригонометрическому кругу	
$= -\frac{2+\sqrt{2}}{2} \div \frac{\sqrt{2}}{2} =$	$Cos 45^{\circ} = \frac{\sqrt{2}}{2}, Sin 45^{\circ} = \frac{\sqrt{2}}{2}$	
$= -\frac{2+\sqrt{2}}{2} \cdot \frac{2}{\sqrt{2}} = -\frac{2+\sqrt{2}}{\sqrt{2}} =$		
$= -\left(\frac{2}{\sqrt{2}} + \frac{\sqrt{2}}{\sqrt{2}}\right) = -\left(\frac{2}{\sqrt{2}} + 1\right) =$	Деление заменим на умножение, при этом перевернем вторую дробь и сократим на 2.	
$= -\left(\frac{2 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} + 1\right) = -\left(\frac{2 \cdot \sqrt{2}}{2} - 1\right) =$ $= -(\sqrt{2} + 1)$	перевернем вторую дроов и сократим па 2.	
- (V2 +1)		

Раздел 2 Корни, степени и логарифмы

Тема 2.1 Корни и степени

План изучения темы:

- 1. Корни и степени. Корни натуральной степени из числа и их свойства.
- 2. Степени с рациональными показателями, их свойства. Степени с действительными показателями.
- 3. Степенная функция, ее свойства и график.
- 4. Степенные уравнения и неравенства.

Корни и степени

Определение Корнем n -й ($n \in R$, $n \ne 1$) степени из неотрицательного числа a называют такое неотрицательное число, при возведении которого в степень n получается a.

<u>Определение</u> Корнем нечетной степени n ($n \in R$, n - нечетное) из отрицательного числа a называют такое отрицательное число, при возведении которого в степень n получается a.

Замечание

1) Корень четной степени n из отрицательного числа не определено во множестве рациональных чисел.

Примеры вычисления корней (извлечения корня)

1)
$$\sqrt{25} = 5$$
, $m.\kappa. 5^2 = 25$

2)
$$\sqrt[3]{0,0081} = 0.3 \text{ m.s.} (0.3)^3 = 0.0081$$

3)
$$\sqrt[4]{\frac{16}{81}} = \frac{2}{3} m.\kappa. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$\sqrt[3]{-125} = -5 \text{ m.k.} (-5)^3 = -125$$

5)
$$\sqrt[4]{-10000}$$
 не определено во множестве рациональных чисел.

Таблица степеней некоторых чисел

таолица степеней некоторых чисел						
$2^2 = 4$	$3^2 = 9$	$5^2 = 25$	$7^2 = 49$			
$2^{3} = 8$	$3^3 = 27$	$5^3 = 125$	$7^3 = 343$			
$2^4 = 16$	$3^4 = 81$	$5^4 = 625$	$8^2 = 64$			
$2^{5} = 32$	$3^{\mathfrak{s}} = 243$	$5^5 = 3125$	$8^3 = 512$			
$2^6 = 64$	$4^2 = 16$	$6^2 = 36$	$9^2 = 81$			
$2^{7} = 128$	$4^3 = 64$	$6^3 = 216$	$9^3 = 729$			
$2^{8} = 256$	$4^4 = 256$		$ \begin{vmatrix} 10^2 = 100 \\ 10^3 = 1000 \end{vmatrix} $			
$2^9 = 512$	$4^{5} = 1024$		$10^4 = 10000$ $10^4 = 10000$			
$2^{10} = 1024$						

Свойства корня *n*-й степени

Все свойства формулируются только для неотрицательных значений переменных, содержащихся под знаком корней.

$(\sqrt[n]{a})^n = a; (\sqrt[n]{a^n}) = a$	(1)	$\left(\sqrt[n]{a}\right)^k = \sqrt[n]{a^k}$	(4)
$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$	(2)	$\sqrt[n]{\sqrt[k]{a}} = \sqrt[nk]{a}$	(5)
$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \ (b \neq 0)$	(3)	$\sqrt[np]{a^{kp}} = \sqrt[n]{a^k}$	(6)

Примеры применения свойств корня n-й степени для решения задач Вычислить

1)
$$\sqrt[5]{243 \cdot 32}$$

<u>1) Решение</u>	<u>Пояснение</u>
$ \sqrt[5]{243 \cdot 32} = = \sqrt[5]{243} \cdot \sqrt[5]{32} = $	Преобразуем по свойству (2) Используя таблицу степеней вычислим
$= 3 \cdot 2 = 6$	

$$\frac{\sqrt{9} \cdot \sqrt[3]{24}}{\sqrt{24}}$$

2) Решение	<u>Пояснение</u>
$\sqrt[3]{9} \cdot \sqrt[3]{24} =$	Воспользуемся свойством (2) справа налево
$= \sqrt[3]{9 \cdot 24} = \sqrt[3]{216} = 6$	

3)
$$(-2\sqrt[4]{5})^4$$

2) Решение	<u>Пояснение</u>
$(-2\sqrt[4]{5})^4 = (-2)^4 \cdot (\sqrt[4]{5})^4 =$	Возведем в степень 4 каждый множитель, помним, что
$= 16 \cdot 5 = 80$	отрицательное число в четной степени становится
$= 10 \cdot 3 = 80$	положительным

4)
$$\sqrt[4]{10-\sqrt{19}} \cdot \sqrt[4]{10+\sqrt{19}}$$

<u>Решение</u>	<u>Пояснение</u>
$\sqrt[4]{10-\sqrt{19}}\cdot\sqrt[4]{10+\sqrt{19}} =$	Так как степен корней одинаковые, то запишем их под общий корень (свойство 2), в скобочках формула
$= \sqrt[4]{(10 - \sqrt{19}) \cdot (10 + \sqrt{19})} =$	сокращенного умножения «разность квадратов»
$= \sqrt[4]{10^2 - (\sqrt{19})^2} =$	
$= \sqrt[4]{100 - 19} = \sqrt[4]{81} = 3$	

Обобщение понятия о показателе степени

Определение

Если $\frac{p}{q}$ - обыкновенная дробь $(q \neq 1)$ и $a \geq 0$, то под $a^{\frac{p}{q}}$ понимают $\sqrt[q]{a^p}$, т.е.

$$a^{\frac{p}{q}} = \sqrt[q]{a^p}, \quad a \ge 0$$

Определение

Если
$$\frac{p}{q}$$
 - обыкновенная дробь $(q \neq 1)$ и $a > 0$, то под $a^{-\frac{p}{q}}$ понимают $\frac{1}{a^{\frac{p}{q}}}$, т.е.

$$a^{-\frac{p}{q}} = \frac{1}{a^{\frac{p}{q}}}, \quad a > 0$$

Замечание

Степень с дробным показателем для отрицательного основания не определена.

Свойства степеней

$$a > 0$$
, $b > 0$, $s \in R$, $t \in R$

$a^s \cdot a^t = a^{s+t}$	(1)	$\left(\frac{a}{b}\right)^s = \frac{a^s}{b^s}$	(5)
$a^s \div a^t = a^{s-t}$	(2)	$a^{\frac{s}{t}} = \sqrt[t]{a^s}$	(6)
$\left(a^{s}\right)^{t}=a^{st}$	(3)	$a^{-s} = \frac{1}{a^{s}}$	(7)
$(ab)^s = a^s \cdot b^t$	(4)		

Примеры применения формул степеней для решения задач

1) Упростить
$$\left(x^{\frac{1}{3}} + y^{\frac{1}{3}}\right)^2 - 2\sqrt[3]{xy} - \frac{1}{\left(\sqrt[3]{y}\right)^2}$$

1)Решение
$$\left(x^{\frac{1}{3}} + y^{\frac{1}{3}}\right)^{2} - 2\sqrt[3]{xy} - \frac{1}{\left(\sqrt[3]{y}\right)^{2}} = \left(x^{\frac{1}{3}}\right)^{2} + 2x^{\frac{1}{3}}y^{\frac{1}{3}} + \left(y^{\frac{1}{3}}\right)^{2} - 2\sqrt[3]{x} \cdot \sqrt[3]{y} - \left(\sqrt[3]{y}\right)^{2} = x^{\frac{2}{3}} + 2x^{\frac{1}{3}}y^{\frac{1}{3}} + y^{\frac{2}{3}} - 2x^{\frac{1}{3}}y^{\frac{1}{3}} - y^{\frac{2}{3}} = x^{\frac{2}{3}}$$

$$\sqrt[3]{x^{2}} - 1$$

2) Решить уравнение
$$\sqrt[3]{x^2} = 1$$

$$\frac{2)$$
Решение $\sqrt[3]{x^2} = 1$ $(\sqrt[3]{x^2})^3 = 1^3$ $x^2 = \pm 1$ $Omsem: x_1 = 1, x_2 = -1$

3) Решить уравнение $x^{\overline{3}} = 1$

$$x^{\frac{2}{3}} = 1$$

3)Решение

$$x^3 = 1$$

$$\left(x^{\frac{2}{3}}\right)^3 = 1^3$$

$$x^{\frac{2}{3}\cdot 3}=1$$

$$x^{2} = 1$$

$$x = \pm 1$$

т.к. в условии х возводится

в дробную степень, то

х – неотрицательное число

$$Omвет: x = 1$$

4) Решить уравнение
$$x^{\frac{2}{3}} - 2x^{\frac{1}{3}} - 8 = 0$$

4)Решение

$$x^{-\frac{2}{3}} - 2x^{-\frac{1}{3}} - 8 = 0$$

$$\left(x^{-\frac{1}{3}}\right)^{2} - 2x^{-\frac{1}{3}} - 8 = 0$$

 Π усть $x^{-\frac{1}{3}} = y$, тогда

уравнение примет вид

$$y^2 - 2y - 8 = 0$$

$$a = 1, b = -2, c = -8$$

$$D = b^2 - 4ac = (-2)^2 - 4 \cdot 1 \cdot (-8) =$$

$$=4+32=36>0\Rightarrow 2$$
 корня

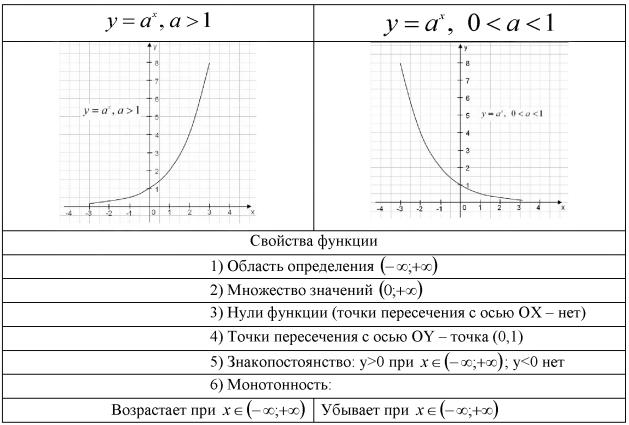
$$y_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-2) \pm \sqrt{36}}{2 \cdot 1} =$$

$$=\frac{2\pm6}{2}$$

$$y_1 = 4$$
, $y_2 = -2$

Показательная функция ее свойства и график

$$y = a^x$$



Показательные уравнения

<u>Определение</u> Уравнения, содержащие переменную в показателе степени называются показательными.

В общем виде показательные уравнения имеют вид: $a^{f(x)} = b$.

Теорема

Показательное уравнение $a^{f(x)} = a^{g(x)}$ (где a > 0, $a \ne 1$) равносильно уравнению f(x) = g(x).

Таким образом решение показательного уравнения сводится к следующему:

- 1) Привести левую и правую части равенства к виду $a^{f(x)} = a^{g(x)}$ (т.е. к одинаковому основанию)
- 2) На основании теоремы перейти к тождественному равенству f(x) = g(x) и решить его.

Примеры решения показательного уравнений

1) Пример Решить уравнение $2^{2x-4} = 64$

<u>1)Решение</u>	<u>Пояснение</u>
$2^{2x-4}=64$	Приведем левую и правую часть равенства к одинаковому
$2^{2x-4} = 2^6$	основанию 2, представив $64 = 2^6$
2x-4=6	На основании теоремы перейдем к равносильному равенству показателей степеней.
	Получили линейное неравенство, решаем его – с переменной в
2x = 6 + 4	левую часть, без переменной – в правую.
2x = 10	Находим переменную, как неизвестный множитель – произведение
10	10 делим на известный множитель 2.
$x = \frac{10}{2}$	
x = 5	
Omвет: x = 5	

2) Пример Решить уравнение $\left(\frac{1}{3}\right)^{2x-3.5} = \frac{1}{\sqrt{3}}$

	(3) 1/3
<u>2)Решение</u>	<u>Пояснение</u>
$\left(\frac{1}{3}\right)^{2x-3.5} = \frac{1}{\sqrt{3}}$	Представим $\sqrt{3}=3^{\frac{1}{2}}$
$\left(\frac{1}{3}\right)^{2x-3.5} = \frac{1}{3^{\frac{1}{2}}}$	Т.к. единица в любой степени равна единице, то степень $\frac{1}{2}$ можно отнести ко всей дроби.
$\left(\frac{1}{3}\right)^{2x-3.5} = \left(\frac{1}{3}\right)^{\frac{1}{2}}$	На основании теоремы перейдем к равносильному равенству показателей степеней.
$2x-3,5=\frac{1}{2}$	$\frac{1}{2} = 0,5$ Решаем получившееся линейное уравнение - с переменной в левую
2x - 3.5 = 0.5	часть, без переменной – в правую.
2x = 0.5 + 3.5	Находим переменную x, как неизвестный множитель – произведение 4 делим на известный множитель 2.
2x = 4	
$x = \frac{4}{2}$	
x=2	
Omвет: x = 2	

3) Пример Решить уравнение
$$\frac{(0,2)^{x-0,5}}{\sqrt{5}} = 5 \cdot 0,04^{x-2}$$

2)Решение	<u>Пояснение</u>
$(0,2)^{x-0,5}$	Представим десятичную дробь 0,2 и 0,04 в виде
$\frac{(0,2)^{x-0,5}}{\sqrt{5}} = 5 \cdot 0,04^{x-2}$	обыкновенных дробей, и $\sqrt{5} = 5^{\frac{1}{2}}$
$\left(\frac{2}{10}\right)^{x-0,5}$	Сократим дроби.
$\frac{\left(\frac{10}{10}\right)}{5^{\frac{1}{2}}} = 5^{1} \cdot \left(\frac{4}{100}\right)^{x-2}$	
$(1)^{x-0,5}$	
$\frac{\left(\frac{1}{5}\right)^{x-0,5}}{5^{\frac{1}{2}}} = 5^{1} \cdot \left(\frac{1}{25}\right)^{x-2}$	$\frac{1}{5} = 5^{-1}; \frac{1}{25} = 5^{-2}$
$\frac{\left(5^{-1}\right)^{x-0,5}}{5^{0,5}} = 5^{1} \cdot \left(5^{-2}\right)^{x-2}$	При возведении степени в степень показатели перемножаются: -1 на (x-0,5) и -2 на (x-2).
${5^{0,5}} = 3 \cdot (3)$	
$\frac{5^{-1\cdot(x-0,5)}}{5^{0,5}} = 5^1 \cdot 5^{-2\cdot(x-2)}$	При делении показательных выражений с одинаковыми основаниями показатели степени
$\frac{5^{-x+0,5}}{5^{0,5}} = 5^1 \cdot 5^{-2^{x+4}}$	вычитаются, а при умножении - складываются: (-x+0,5)-0,5 и 1+(-2x+4)
$5^{(-x+0,5)-0,5} = 5^{1+(-2x+4)}$	
$5^{-x+0,5-0,5} = 5^{1-2x+4}$	
$5^{-x} = 5^{-2x+5}$	На основании теоремы перейдем к равносильному равенству показателей степеней.
-x = -2x + 5	Решаем получившееся линейное уравнение - с
-x + 2x = 5	переменной в левую часть, без переменной – в правую
x = 5	
Ответ: x = 5	

Метод замены переменной при решении показательных уравнений.

Рассмотрим этот метод на конкретных примерах

1) Пример Решить уравнение $3^{2x+2} + 3^{2x} = 30$

1)Решение	<u>Пояснение</u>
$3^{2x+2} + 3^{2x} = 30$	Воспользуемся свойством: умножении показательных
$3^{2x} \cdot 3^2 + 3^{2x} = 30$	выражений с одинаковыми основаниями показатели
	степени складываются.
Пусть $3^{2x} = y$, тогда	Обозначим одинаковые выражения, содержащие
	переменную х на новую переменную у.
уравнение примет вид	
$y \cdot 3^2 + y = 30$	$3^2 = 9$
9y + y = 30	Приведем подобные слагаемые.
10y = 30	
$y = \frac{30}{10}$	
y = 3	Сделаем обратную замену: в найденное решение
$npu\ y=3 \Longrightarrow 3^{2x}=3$	вместо у подставим то, что обозначали за у.
$3^{2x} = 3^1$	На основании теоремы перейдем к равносильному
2x = 1	равенству показателей степеней.
$x = \frac{1}{2}$	Находим переменную х, как неизвестный множитель – произведение 1 делим на известный множитель 2.
$Omsem: x = \frac{1}{2}$	

2) Пример Решить уравнение $4^x + 2^{x+1} - 24 = 0$

2)Решение	<u>Пояснение</u>
$4^x + 2^{x+1} - 24 = 0$	Представим $4=2^2$
$(2^2)^x + 2^x \cdot 2^1 - 24 = 0$	Т.к. при возведении степени в степень показатели
$(2^x)^2 + 2^x \cdot 2 - 24 = 0$	перемножаются, то множители $2 u x$ можно поменять
	местами.
Π усть $2^x = y$ тогда	0.5
уравнение примет вид	Обозначим величину 2 [*] через новую переменную <i>у</i>
$y^2 + y \cdot 2 - 24 = 0$	После замены уравнение становится квадратным.
$y^2 + 2y - 24 = 0$	Решаем его используя формулы дискриминанта и корней.
a = 1; b = 2; c = -24	
$D = b^2 - 4ac =$	
$= 2^2 - 4 \cdot 1 \cdot (-24) = 100$	
$y_{1,2} = \frac{-b \pm \sqrt{D}}{2a} =$	
$=\frac{-2\pm\sqrt{100}}{2\cdot1}=\frac{-2\pm10}{2}$	
$={2\cdot 1}={2}$	Сделаем обратную замену: в найденное решение вместо у
$y_1 = -6; y_2 = 4$	подставим то, что обозначали за у.
$npu \ y_1 = -6 \Rightarrow 2^x = 4$	
$2^x = 2^2$	2 в любой степени есть число положительное, поэтому
x = 2	уравнение $2^x = -6$ не имеет решений.
$npu \ y_1 = -6 \Rightarrow 2^x = -6 \Rightarrow \emptyset$	
Om eem: x=2	

Показательные неравенства

<u>Определение</u> Неравенство, содержащее в показателе степени переменную, называются **показательными**.

Теорема

Решение показательного неравенства вида $a^{f(x)} > a^{g(x)}$, где a > 0, $a \ne 1$ основывается на следующих утверждениях:

- 1) Если a > 1, то неравенства $a^{f(x)} > a^{g(x)} u$ f(x) > g(x) равносильны.
- 2) Если 0 < a < 1, то неравенства $a^{f(x)} > a^{g(x)} u$ f(x) < g(x) равносильны.

Примеры показательных неравенств

1) Пример Решить неравенство $2^{2x-4} > 64$

1)Решение	<u>Пояснение</u>
$2^{2x-4} > 64$	Представим $64 = 2^6$
$2^{2x-4} > 2^6$	На основании первой части теоремы (основание >1) перейдем к равносильному неравенству
	равносильному неравенетву
2x-4 > 6	Перенесем 4 в правую часть неравенства, не забыв поменять знак
2x > 6 + 4	на противоположный.
2x > 10	
$\left \frac{2x}{2}\right> \frac{10}{2}$	Разделим обе части неравенства на 2
$\frac{1}{2}$	
x > 5	
<i>Ombem</i> : $x \in (5;+\infty)$	

2) Пример Решить неравенство $\left(\frac{1}{3}\right)^{2x-3,5} < \frac{1}{\sqrt{3}}$

2)Решение	<u>Пояснение</u>
$\left(\frac{1}{3}\right)^{2x-3.5} < \frac{1}{\sqrt{3}}$	Представим $\sqrt{3}=3^{\frac{1}{2}}$
$\left(\frac{1}{3}\right)^{2x-3.5} < \frac{1}{3^{\frac{1}{2}}}$	Т.к. единица в любой степени равна единице, то степень $\frac{1}{2}$ можно
$\left(\frac{1}{3}\right)^{2x-3.5} < \left(\frac{1}{3}\right)^{\frac{1}{2}}$	отнести ко всей дроби.
$2x - 3.5 > \frac{1}{2}$	На основании части второй теоремы (основание меньше единицы) перейдем к равносильному неравенству (поменяв знак неравенства на противоположный.
	$\frac{1}{2} = 0.5$
2x-3.5 > 0.5	Решаем получившееся линейное неравенство - с переменной в левую часть, без переменной – в правую.
2x > 0.5 - 3.5	siebyto taotb, oes nepemention b tipabyto.
2x > 4	Разделим обе части неравенства на 2
$\frac{2x}{2} > \frac{4}{2}$	
x > 2	
Ombem: $x \in (2;+∞)$	

3) Пример Решить неравенство $\frac{4 \cdot 3^x - 10}{3^{x+1} - 1} \le 1$

$$\frac{4 \cdot 3^x - 10}{3^{x+1} - 1} \le 1$$

	3***-1
3)Решение	<u>Пояснение</u>
$\frac{4 \cdot 3^x - 10}{3^{x+1} - 1} \le 1$	На основании свойства степени $3^{x+1} = 3^x \cdot 3^1$
$\frac{4 \cdot 3^{x} - 10}{3^{x} \cdot 3^{1} - 1} \le 1$	Введем новую переменную $3^x = y$
$ \begin{array}{c c} 3 \cdot 3 - 1 \\ \hline \Pi y cmb 3^x = y, mor\partial a \end{array} $	
неравенство примет вид	
$\frac{4 \cdot y - 10}{y \cdot 3 - 1} \le 1$	
$\frac{4y-10}{3y-1} \le 1$	Перенесем единицу в левую часть неравенства, не забыв поменять знак на противоположный.
$\frac{4y - 10}{3y - 1} - 1 \le 0$	Приведем дроби к общему знаменателю – домножим вторую дробь
$\frac{4y-10}{3y-1} - \frac{3y-1}{3y-1} \le 0$	на выражение (3y-1) Т.к. у дробей одинаковые знаменатели, то запишем их под общую
	дробную черту. Раскроем скобочку, перед которой стоит знак минус – внутри
$\frac{4y-10-(3y-1)}{3y-1} \le 0$	скобочки поменяем все знаки на противоположные, после приведем подобные слагаемые.
$\frac{4y - 10 - 3y + 1}{3y - 1} \le 0$	
3y-1	Дробь равна нулю, только когда числитель равен нулю, а
$\frac{y-9}{3y-1} \le 0$	знаменатель не равен нулю.
$\begin{vmatrix} 3y - 1 \\ y - 9 = 0 \ u \ 3y - 1 \neq 0 \end{vmatrix}$	Применим метод интервалов – на числовую прямую нанесем нули (число 9 – точка закрашенная, т.к. знак неравенства нестрогий) и
$y = 9 3y \neq 1$	точки в которых дробь не существует (число $\frac{1}{3}$ - точка
$y \neq \frac{1}{3}$	незакрашенная, т.к. дробь не существует в этой точке). Из первого
точки 9, 1 нанесем на	промежутка $(-\infty; \frac{1}{3})$ возьмем любое число (например число 0) и
з числовую прямую для	подставим его в дробь, чтобы определить знак дроби $\frac{0-9}{3\cdot 0-1} > 0$,
применения метода	значит на первом промежутке знак «+»; со второго промежутка
интервалов	$(\frac{1}{3};9)$ возьмем любое число (например число 1) и подставим его в
3 9	дробь $\frac{1-9}{3\cdot 1-1}$ <0, значит на втором промежутке знак «-»; возьмем с
	третьего промежутка ($9;+\infty$) любое число (например число 10) и
$\frac{1}{3} < y \le 9$	подставим его в дробь $\frac{10-9}{3\cdot 10-1} > 0$, значит на третьем промежутке
	знак «+».
	Т.к. знак неравенства « \leq », значит с числовой прямой выбираем промежутки со знаком «-», т.е. $\frac{1}{3} < y \leq 9$
	Вернемся к переменной х, вспомним, что $3^x = y$
	Приведем к одинаковому основанию.
	На основании первой части теоремы (основание >1) перейдем к

Возвращаясь к переменной х,	равносильному неравенству
получим	
$\left \frac{1}{3} < 3^x \le 9 \right $	
$3^{-1} < 3^x \le 3^2$	
$-1 < x \le 2$	
Omeem: $x \in (-1,2]$	

Тема 2.2. Логарифм.

План изучения темы

- 1. Логарифм числа.
- 2. Основное логарифмическое тождество. Десятичные и натуральные логарифмы.
- 3. Логарифмическая функция ее свойства и график.
- 4. Правила действий с логарифмами (свойства логарифмов).
- 5. Переход к новому основанию. Преобразование логарифмических выражений. Преобразование рациональных, иррациональных степенных, показательных и логарифмических выражений.
- 6. Логарифмические уравнения и способы их решения.
- 7. Логарифмические неравенства и способы их решения.

Понятие логарифма

Определение

Погарифмом положительного числа b по положительному и отличному от 1 основанию а называют показатель степени в которую нужно возвести число a, чтобы получить b. Погарифм числа b по основанию a обозначается $\log_a b$

Определение можно сформулировать в виде

$$a^{\log_a b} = b$$
, $\partial e \ a > 0$, $a \ne 1$, $b > 0$

Для обозначения *десятичных* логарифмов принята специальная запись: вместо $\log_{10} b$, где b произвольное положительное число, пишут $\lg b$.

Для обозначения *натуральных* логарифмов принята специальная запись: вместо $\log_{e} b$, где b произвольное положительное число, пишут $\ln b$

Примеры логарифмов

1)
$$\log_{3} 8 = 3$$
, $m.\kappa$. $2^{3} = 8$

2)
$$\log_{3}\left(\frac{1}{27}\right) = -3$$
, $m.\kappa. 3^{-3} = \frac{1}{27}$

3)
$$\log_{\frac{1}{5}} 25 = -2$$
, $m.\kappa. \left(\frac{1}{5}\right)^{-2} = 25$

4)
$$\log_{4} 2 = \frac{1}{2}$$
, $m.\kappa. 4^{\frac{1}{2}} = 2$

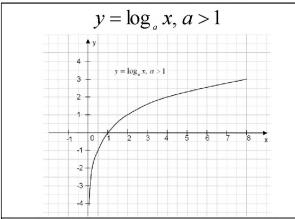
Замечания

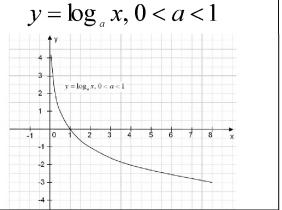
$$\log_a a = 1 \qquad \log_a 1 = 0 \qquad \log_a a^c = c$$

Определение

Операцию нахождения логарифма числа называют логарифмированием.

Логарифмическая функция, ее график и свойства





Свойства функции

- 1) Область определения $(0,+\infty)$
- 2) Множество значений $(-\infty; +\infty)$
- 3) Нули функции (точки пересечения с осью ОХ точка (1,0)
- 4) Точки пересечения с осью ОУ нет
- 5) Знакопостоянство:

y>0 при $x \in (1;+\infty);$ y<0 при $x \in (0;1)$

6) Монотонность:

Возрастает при $x \in (0,+\infty)$ Убывает при $x \in (0,+\infty)$

Замечание график функции $y = \log_a x$ симметричен графику функции $y = a^x$ относительно прямой y = x

Свойства логарифмов

Все свойства формулируются только для положительных значений переменных, содержащихся под знаком логарифма.

1) $\log_a a^r = r$	(1)
$2) a^{\log_a b} = b$	(2)
$3) \log_a b \cdot c = \log_a b + \log_a c$	(3)
$4) \log_a \frac{b}{c} = \log_a b - \log_a c$	(4)
$5) \log_a b^r = r \cdot \log_a b$	(5)

Примеры применения свойств логарифмов для вычисления логарифмов

1) Пример Вычислить $\log_3 6 + \log_3 18 - \log_3 4$

<u>1)Решение</u>	<u>Пояснение</u>	
$\log_{3} 6 + \log_{3} 18 - \log_{3} 4 =$	На основании свойств (3) и (4) преобразуем сумму и разность	
$=\log_{3}\frac{6\cdot18}{4}=$	логарифмов в произведение. $\log_3 27 = 3$, т.к. $3^3 = 27$	
$= \log_{3} 27 = 3$		

$_{ m 2)}$ Пример Вычислить $9^{^{0,5-\log_32}}-\log_3\log_28$

2)Решение	<u>Пояснение</u>
$9^{0.5-\log_3 2} - \log_3 \log_2 8 =$	Разность в степени преобразуется в частное (дробь), а
$=\frac{9^{0.5}}{9^{\log_3 2}} - \log_3 3 =$	$\log_2 8 = 3$, t.k. $2^3 = 8$
$= \frac{\sqrt{9}}{(3^2)^{\log_3 2}} - 1 =$	$9^{0.5} = \sqrt{9}$
$=\frac{3}{(3^{\log_3 2})^2}-1=$	Т.к. при возведении степени в степень показатели перемножаются, (а от перестановки мест множителей произведение не меняется) то степени $2u \log_3 2$ можно
$=\frac{3}{2^2}-1=\frac{3}{4}-\frac{4}{4}=$	поменять местами. $3^{\log_2 2} = 2$ (по свойству (1))
$=-\frac{1}{4}$	

3) Пример Вычислить
$$\left(8^{\frac{1}{3} + \log_2 3}\right) \div \log_2 \log_3 81$$

3)Решение	<u>Пояснение</u>
$\left(\frac{1}{2} + \log_2 3\right)$	Сумму в степени преобразуем в произведение, а
$\left(8^{\frac{1}{3} + \log_2 3}\right) \div \log_2 \log_3 81 =$	$\log_{3} 81 = 4$, t.k. $3^4 = 81$
$=8^{\frac{1}{3}} \cdot 8^{\log_2 3} \div \log_2 4 =$	$8^{\frac{1}{3}} = \sqrt[3]{8} = 2$, a $\log_2 4 = 2$, т.к. $2^2 = 4$
$- \circ \cdot \circ - \log_2 4 -$	$8 = 2^3$ и т.к. при возведении степени в степень
$=\sqrt[3]{8}\cdot(2^3)^{\log_23}\div 2=$	показатели перемножаются, (а от перестановки
	мест множителей произведение не меняется) то
$= 2 \cdot (2^{\log_2 3})^3 \div 2 = 2 \cdot 3^3 \div 2 = 27$	степени $3 u \log_{2} 3$ можно поменять местами.
	$2^{\log_2 3} = 3$ (по свойству (1))

Формула перехода к новому основанию логарифма

Теорема Если a, b, c - положительные числа, причем $a \neq 1$ u $c \neq 1$, то имеет место

равенство $\log_a b = \frac{\log_a b}{\log_a a}$ (формула перехода к новому основанию логарифма).

<u>Следствие 1</u> Если a, b - положительные числа, причем $a \ne 1$ u $b \ne 1$, то имеет место равенство $\log_a b = \frac{1}{\log_b a}$

<u>Следствие 2</u> Если a,b - положительные числа, причем $a \ne 1$, то для любого числа $r \ne 0$ справедливо равенство $\log_a b = \log_{a^r} b^r$

Примеры применение формулы перехода к новому основанию в логарифме

1) **Пример** Найдите значение выражения $\frac{\log_3 49}{\log_3 2} - \frac{1}{\log_2 2} - \log_2 14$

1) Решение
$$\frac{\log_{5} 49}{\log_{5} 2} - \frac{1}{\log_{7} 2} - \log_{2} 14 =$$

$$= \log_{2} 49 - \log_{2} 7 - \log_{2} 14 =$$

$$= \log_{2} \frac{49}{7} - \log_{2} 14 =$$

$$= \log_{2} 7 - \log_{2} 14 =$$

$$= \log_{2} 7 - \log_{2} 14 =$$

$$= \log_{2} \frac{7}{14} = \log_{2} \frac{1}{2} = -1$$

2) **Пример** Известно, что $\log_{_{25}} 5 = \alpha$. Найдите $\log_{_{25}} 0,5$

2) Решение
$$\log_{25} 0.5 = \log_{25} \frac{1}{2} = \log_{25} 2^{-1} =$$

$$= -1 \cdot \log_{25} 2 = -\frac{1}{\log_{2} 25} =$$

$$= -\frac{1}{\log_{2} 5^{2}} = -\frac{1}{2 \cdot \log_{2} 5}$$
m.к. $\log_{2} 5 = a$, *mo nonyчaeм*

$$-\frac{1}{2a}$$

3) Пример Решите уравнение $\log_5 x - 3 \log_x 5 = 2$

3) Решение
$$\log_{5} x - 3\log_{x} 5 = 2$$

$$\log_{5} x - 3\frac{1}{\log_{5} x} = 2$$
Пусть $\log_{5} x = y$ тогда
уравнение примет вид
$$y - 3\frac{1}{y} - 2 = 0$$

$$\frac{y}{1} - \frac{3}{y} - \frac{2}{1} = 0$$

$$\frac{y^{2}}{y} - \frac{3}{y} - \frac{2y}{y} = 0$$

$$\frac{y^{2} - 3 - 2y}{y} = 0$$

$$y^{2} - 3 - 2y = 0$$

$$y^{2} - 3 - 2y = 0$$

$$y^{2} - 2y - 3 = 0$$

$$a = 1, b = -2$$

$$a = -3$$

$$D = b^{2} - 4ac = (-2)^{2} - 4 \cdot 1 \cdot (-3) =$$

$$= 4 + 12 = 16 > 0 \Rightarrow 2 \text{ корня}$$

$$y_{12} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-2) \pm \sqrt{16}}{2 \cdot 1} =$$

$$= \frac{2 \pm 4}{2}$$

$$y_{1} = 3 \quad y_{2} = -1$$

$$npu \quad y_{1} = 3 \Rightarrow \log_{5} x = 3 \Rightarrow x = 5^{3} = 125$$

$$npu \quad y_{2} = -1 \Rightarrow \log_{5} x = -1 \Rightarrow \emptyset$$

$$Omeem : x = 125$$

Логарифмические уравнения

Определение

Уравнение, содержащее переменную под знаком логарифма, называют *погарифмическим*. В общем виде логарифмическое уравнение имеет вид: $\log_a x = b \ (\ensuremath{\it c}\partial e \ a > 0, \ a \neq 1)$

Теорема

Если f(x) > 0 и g(x) > 0, то логарифмическое уравнение

$$\log_a f(x) = \log_a g(x)$$
 (где $a > 0$, $a \ne 1$) равносильно уравнению $f(x) = g(x)$

На основании теоремы можно сформулировать принцип (правило) решения логарифмических уравнений:

- 1) Преобразовать логарифмическое уравнение к виду $\log_a f(x) = \log_a g(x)$
- 2) Решают равносильное уравнение f(x) = g(x)
- 3) Проверить найденные решения по условиям f(x) > 0 и g(x) > 0 (те корни, которые удовлетворяют этим условиям, являются корнями уравнения, а те, которые не удовлетворяют хотя бы одному условию считаются посторонними корнями.

Примеры решения логарифмических уравнений

1) Пример Решить уравнение $\log_3(x^2 - 3x - 5) = \log_3(7 - 2x)$

<u>1) Решение</u>	<u>Пояснение</u>
$\log_3(x^2 - 3x - 5) = \log_3(7 - 2x)$ $x^2 - 3x - 5 = 7 - 2x$ $x^2 - 3x - 5 - 7 + 2x = 0$ $x^2 - x - 12 = 0$	На основании теоремы перейдем к равносильному равенству. Перенесем все в левую часть уравнения (не забыв при этом поменять знак
$a = 1, b = -1, c = -12$ $D = b^{2} - 4ac = (-1)^{2} - 4 \cdot 1 \cdot (-12) =$ $= 1 + 48 = 49 > 0 \Rightarrow 2 \kappa o p + \pi$ $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-1) \pm \sqrt{49}}{2 \cdot 1} = \frac{1 \pm 7}{2}$ $x_{1} = 4, x_{2} = -3$	выражения на противоположный), приведем подобные слагаемые, получим квадратное уравнение, которое решаем с помощью формул дискриминанта и корней.

Проверим найденные корни по условиям $\begin{cases} x^2 - 3x - 5 > 0 \\ 7 - 2x > 0 \end{cases}$ $x_1 = 4 \text{ не удовлетворяет}$ второму неравенству \Rightarrow $x_1 = 4 \text{ посторонний корень.}$ $x_2 = -3 \text{ удовлетворяет обоим}$ неравенствам \Rightarrow $x_2 = -3 \text{ корень}$ Oтвет: x = -3

Проверим найденные корни по условиям При $x_1 = 4$ Второе неравенство примет вид $7-2\cdot 4>0$ неверно, поэтому $x_1 = 4$ посторонний корень. При $x_1 = -3$ Первое неравенство примет вид $(-3)^2 - 3\cdot (-3) - 5>0$ верное; второе неравенство примет вид $7-2\cdot (-3)>0$ верно, поэтому $x_1 = -3$ корень уравнения.

2) Пример Решить уравнение $\log_2(x+4) + \log_2(2x+3) = \log_2(1-2x)$

2) Пример Решить уравнение $\log_2(x+4)$	$+\log_{2}(2x+3) = \log_{2}(1-2x)$
2) Решение	<u>Пояснение</u>
$\log_2(x+4) + \log_2(2x+3) = \log_2(1-2x)$	Сумма логарифмов преобразуется в
$\log_{2}(x+4)\cdot(2x+3) = \log_{2}(1-2x)$	логарифм произведения.
$(x+4) \cdot (2x+3) = (1-2x)$ $2x^{2} + 3x + 8x + 12 = 1-2x$ $2x^{2} + 3x + 8x + 12 - 1 + 2x = 0$	На основании теоремы перейдем к равносильному равенству. Раскроем скобки, перенесем все выражения в левую часть уравнения и приведем подобные слагаемые.
$2x^{2} + 13x + 11 = 0$ $a = 2, b = 13, c = 11$	
$D = b^2 - 4ac = 13^2 - 4 \cdot 2 \cdot 11 =$	Получили квадратное уравнение, которое решаем используя формулу дискриминанта и
$\begin{vmatrix} =169-88=81>0 \Rightarrow 2 \text{ корня} \\ x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-13 \pm \sqrt{81}}{2 \cdot 2} = \frac{-13 \pm 9}{4} \end{vmatrix}$	корней.
$\begin{vmatrix} x_{1} & 2a & 2 \cdot 2 & 4 \\ x_{1} & = -5,5; & x_{2} & = -1 \end{vmatrix}$	
Проверим найденные корни по условиям	
$\int x + 4 > 0$	Проверим найденные корни по условиям
$\left \begin{array}{c} \left\{ 2x+3>0 \right. \end{array} \right $	При x=-5,5 первое неравенство примет вид - 5,5+4>0 не верно, поэтому x=-5,5
$\left \begin{array}{c} 1-2x>0 \end{array} \right $	посторонний корень.
значение $x = -5,5$ не	При x=-1 первое неравенство примет вид
удовлетворяют уже первому	-1+4>0 верно, второе неравенство примет вид
условию \Rightarrow $x = -5,5$ посторонний корень	$2 \cdot (-1) + 3 > 0$ верно, третье неравенство
значение $x = -1$ удовлетворяют всем	примет вид $1-2\cdot(-1)>0$ верно, поэтому $x=-$
y словиям $\Rightarrow x = -1$ корень	1 корень уравнения.
$Om \varepsilon em: x = -1$	

3) Пример Решить уравнение $\lg^2 x + \lg x + 1 = \frac{7}{\lg \frac{x}{10}}$

- 10 2) Daniel - 10			
3) Решение	<u>Пояснение</u>		
$\lg^{2} x + \lg x + 1 = \frac{7}{\lg \frac{x}{10}}$	Логарифм частного равен разности логарифмов.		
$\lg \frac{x}{10}$			
	$\lg 10 = 1$, т.к. это десятичный логарифм (его		
$\lg x - \lg 10$	основание равно10) и 10 ¹ = 10		
Пусть $\lg x = y$, тогда	D.		
уравнение примет вид	Введем новую переменную.		
7			
$y^2 + y + 1 = \frac{7}{y - 1}$	Перенесем дробь в левую часть уравнения (не забыв		
$y^2 + y + 1 - \frac{7}{v - 1} = 0$	поменять знак на противоположный)		
$y + y + 1 - \frac{y}{y-1} = 0$	Приведем дроби к общему знаменателю, для этого		
$\frac{y^2 + y + 1}{1} - \frac{7}{v - 1} = 0$	домножим вторую дробь на $(y-1)$ и запишем все		
$\frac{1}{1}$ $\frac{1}{y-1}$ $\frac{1}{y-1}$	под общую дробную черту.		
$\frac{(y^{2} + y + 1)(y - 1) - 7}{y - 1} = 0$ $\frac{(y^{3} - 1) - 7}{y - 1} = 0$ $(y^{3} - 1) - 7 = 0 \ u \ y - 1 \neq 0$ $y^{3} - 1 = 7 \qquad y \neq 1$ $y^{3} = 8$	По формуле сокращенного умножения (разность кубов) $(y^2 + y + 1)(y - 1) = (y^3 - 1)$ Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.		
$y = 2$ $y = 2 \implies \lg x = 2$	Вернемся к исходной переменной х, вспомнив, что $\lg x = y$ По определению логарифма, получаем $x = 10^2$		
$x = 10^{2}$	102		
x = 100	$x = 10^2$		
х = 100 удовлетворяет	Проверим найденные корни по условию x>0 При x=100 неравенство x>0 верное, значит x=100		
y словию $x > 0 \Rightarrow x = 100$ корень	корень уравнения		
<i>Ombem</i> : $x = 100$	1 Jr		

Логарифмические неравенства

<u>Определение</u> Неравенство, содержащее переменную в показателе степени называют показательным.

Теорема Если f(x) > 0 u g(x) > 0, то:

при a > 0 логарифмическое неравенство $\log_a f(x) > \log_a g(x)$ равносильно неравенству f(x) > g(x) (знак неравенства не меняется);

при 0 < a < 1 логарифмическое неравенство $\log_a f(x) > \log_a g(x)$ равносильно неравенству f(x) < g(x) (знак неравенства меняется на противоположный).

Применение теоремы на практике:

Логарифмическое неравенство преобразуется к виду $\log_a f(x) > \log_a g(x)$

при a > 0 переходят от неравенства $\log_a f(x) > \log_a g(x)$ к равносильной системе

неравенств
$$\begin{cases} f(x) > 0, \\ g(x) > 0, \\ f(x) > g(x). \end{cases}$$

при 0 < a < 1 переходят от неравенства $\log_a f(x) > \log_a g(x)$ к равносильной системе

неравенств
$$\begin{cases} f(x) > 0, \\ g(x) > 0, \\ f(x) < g(x). \end{cases}$$

Примеры решения логарифмических неравенств

1) Пример Решить неравенство $\log_3(2x-4) > \log_3(14-x)$

1) Решение
$$\log_{3}(2x-4) > \log_{3}(14-x)$$

$$\begin{cases} 2x-4 > 14-x, \\ 2x-4 > 0, \\ 14-x > 0. \end{cases}$$

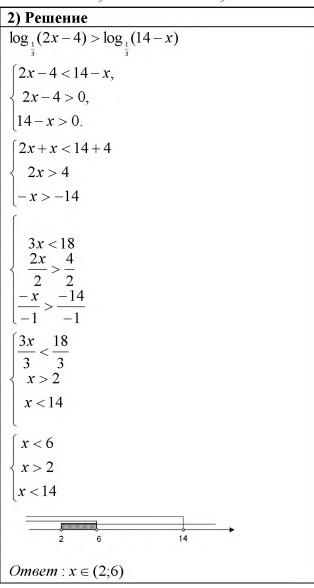
$$\begin{cases} 2x+x > 14+4 \\ 2x > 4 \\ -x > -14 \end{cases}$$

$$\begin{cases} \frac{3x}{2} > \frac{4}{2} \\ \frac{-x}{-1} > \frac{-14}{-1} \end{cases}$$

$$\begin{cases} \frac{3x}{3} > \frac{18}{3} \\ x > 2 \\ x < 14 \end{cases}$$

$$\begin{cases} x > 6 \\ x > 2 \\ x < 14 \end{cases}$$
Ombe m: $x \in (6;14)$

2) Пример Решить неравенство $\log_{\frac{1}{3}}(2x-4) > \log_{\frac{1}{3}}(14-x)$



3) Пример Решить неравенство $\log_{\frac{1}{2}}(16+4x-x^2) \le -4$

3) **Решение** $\log_{\frac{1}{2}}(16+4x-x^{2}) \leq -4$ $\log_{\frac{1}{2}}(16+4x-x^{2}) \leq \log_{\frac{1}{2}}16$ $\begin{cases} 16+4x-x^{2} \geq 16\\ 16+4x-x^{2} > 0 \end{cases}$ 1) $16+4x-x^{2} \geq 16$ $16+4x-x^{2} \geq 16$ $16+4x-x^{2} \geq 16$ $4x-x^{2} \geq 0$ $4x-x^{2} \geq 0$ $4x-x^{2} = 0$ x(4-x) = 0 x = 0 unu 4-x = 0 x = 4

Раздел 3. Функции, их свойства и графики.

План изучения темы

- 1. Функции. Область определения и множество значений; график функции.
- 2. Свойства функции: монотонность, четность, нечетность, ограниченность, периодичность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума. Графическая интерпретация.
- 3. Преобразования графиков. Параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.

Функция, свойства функции

<u>Определение.</u> Если каждому значению переменной х из множества X ставится в соответствие по известному закону некоторое число у из множества Y, то говорят, что на множестве X <u>задана функция y = f(x)</u>.

При этом x – аргумент функции (независимая переменная);

X – область определения функции y=f(x);

y – значение функции (зависимая переменная);

Y – областью значений (изменения) функции.

Примеры функций

$$y = 2x - 3$$
 график — прямая $y = Sin x$ график — синусоида график — гипербола $y = \frac{1}{x - 2}$ график — квадратичная парабола $y = 5x^2 + 8x - 3$

<u>Определение.</u> Областью определения функции y = f(x) называется множество всех значений аргумента x, для которых выражение f(x) определено (имеет смысл).

Примеры: Найти область определения функций

1)
$$y = \frac{2}{x(x-2)}$$

Решение:

Так как знаменатель алгебраической дроби не может быть равен нулю, то

$$\begin{cases} x \neq 0 \\ x - 2 \neq 0 \end{cases} \Rightarrow \begin{cases} x \neq 0 \\ x \neq 2 \end{cases}$$
 таким образом в точках $x = 0$ u $x = 2$ область определения имеет

разрыв. Итак, область определения функции $(-\infty;0)\cup(0;2)\cup(2;+\infty)$

2)
$$y = \frac{\sqrt{x-4}}{x-5}$$

Решение:

Так как подкоренное выражение должно быть неотрицательно, и знаменатель алгебраической дроби не может быть равен нулю, то

$$\begin{cases} x-4 \ge 0 \\ x-5 \ne 0 \end{cases} \Rightarrow \begin{cases} x \ge 4 \\ x \ne 5 \end{cases}$$
 таким образом, область определения функции [4;5] \cup (5;+ ∞)

<u>Определение.</u> Множеством значений функции y = f(x) называется множество таких чисел y_0 , для каждого из которых найдется такое число x_0 , что: $f(x_0) = y_0$.

<u>Определение.</u> Функция f(x) называется возрастающей на множестве X, если для любых двух значений аргумента x_1 и x_2 множества X, таких, что $x_2 > x_1$, выполняется неравенство $f(x_2) > f(x_1)$.

<u>Определение.</u> Функция f(x) называется <u>убывающей</u> на множестве X, если для любых двух значений аргумента x_1 и x_2 множества X, таких, что $x_2 > x_1$, выполняется неравенство $f(x_2) < f(x_1)$.

<u>Определение.</u> Функцию возрастающую на множестве X или убывающую на множестве X, называют монотонной на множестве X.

Пример:

Доказать, что функция f(x) = 5x + 8 возрастающая

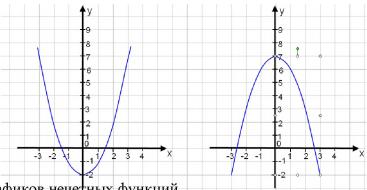
Решение:

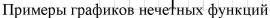
Пусть $x_1 u x_2$ некоторые точки из области определения, такие, что $x_2 > x_1$, т.е. $x_2 - x_1 > 0$. Тогда $f(x_2) = 5x_2 + 8$; $f(x_1) = 5x_1 + 8$ сравним $f(x_2) u f(x_1)$ для этого найдем их разность $f(x_2) - f(x_1) = (5x_2 + 8) - (5x_1 + 8) = 5x_2 + 8 - 5x_1 - 8 = 5x_2 + 8 - 5x_1 - 8 = 5(x_2 + x_1)$ Т.к. $x_2 - x_1 > 0$ и 5 > 0, то $5(x_2 + x_1) > 0$, а значит, $f(x_2) - f(x_1) > 0 \Rightarrow f(x_2) > f(x_1)$ Т.о. для любых двух значений аргумента x_1 и x_2 множества X, таких, что $x_2 > x_1$, выполняется неравенство $f(x_2) > f(x_1)$, а это означает, что функция возрастает на всей области определения.

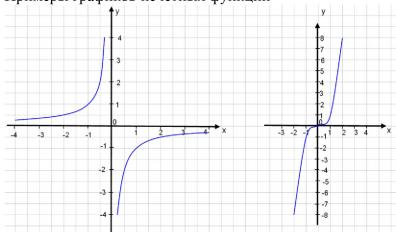
<u>Определение.</u> Функция y=f(x) называется <u>четной</u>, если для любого x из области определения верно равенство f(-x)=f(x). График четной функции симметричен относительно оси OY.

<u>Определение.</u> Функция y=f(x) называется <u>нечетной</u>, если для любого x из области определения верно равенство f(-x)=-f(x). График нечетной функции симметричен относительно начала координат.

Примеры графиков четных функций







Пример:

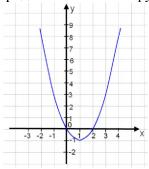
Доказать, что функция $y = \frac{x^3}{x^2 - 5}$ нечетная

Решение:

$$f(-x) = \frac{(-x)^3}{(-x)^2 - 5} = \frac{-x^3}{x^2 - 5} = -\frac{x^3}{x^2 - 5} = -f(x) \Longrightarrow$$
 функция четная.

Определение свойств функции по виду ее графика

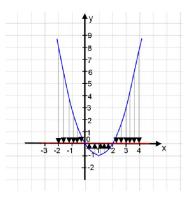
Покажем как определить свойства функции по виду ее графика на примере. *Пример*: Определить свойства функции по виду ее графика



1. Область определения.

Спроецировать весь график на ось OX (на рисунке черные стрелки), получившийся промежуток на оси OX и есть область определения (на рисунке красная линия).

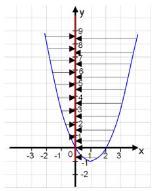
т.о. область определения $(-\infty;+\infty)$



2. Множество значений.

Спроецировать весь график на ось ОУ (на рисунке черные стрелки), получившийся промежуток на оси ОУ и есть множество значений (на рисунке красная линия).

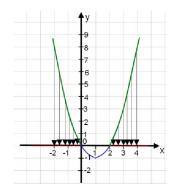
т.о. множество значений $(-1;+\infty)$



3. Промежутки знакопостоянства.

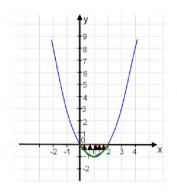
3.1. у>0 (функция положительна)

Найти ту часть (части) графика, которая расположена выше оси OX (на рисунке выделена зеленым цветом); спроецировать найденную часть (части) графика на ось OX (на рисунке черные стрелки), получившийся промежуток на оси OX и есть промежуток, на котором y>0 (на рисунке красная линия). т.о. y>0 на промежутках $(-\infty;0) \cup (2;+\infty)$



3.2. v<0 (функция отрицательна)

Найти ту часть (части) графика, которая расположена ниже оси OX (на рисунке выделена зеленым цветом); спроецировать найденную часть (части) графика на ось OX (на рисунке черные стрелки), получившийся промежуток на оси OX и есть промежуток, на котором y < 0 (на рисунке красная линия). т.о. y < 0 на промежутке (0;2)



4. Промежутки монотонности.

4.1. Возрастание

Найти ту часть (части) графика, которая убывает (те части, где рисуя график слева на право движение идет вверх) (на рисунке выделена зеленым цветом); спроецировать найденную часть (части) графика на ось ОХ (на рисунке черные стрелки), получившийся промежуток на оси ОХ и есть промежуток возрастания (на рисунке красная линия).

т.о. функция возрастает на промежутке $(1;+\infty)$

4.2. Убывание

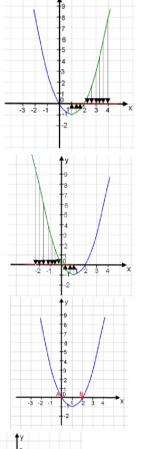
Найти ту часть (части) графика, которая убывает (те части, где рисуя график слева на право движение идет вниз) (на рисунке выделена зеленым цветом); спроецировать найденную часть (части) графика на ось ОХ (на рисунке черные стрелки), получившийся промежуток на оси ОХ и есть промежуток возрастания (на рисунке красная линия).

т.о. функция убывает на промежутке $(-\infty;1)$

5. Нули функции.

Найти точку (точки) пересечения графика с осью OX (на рисунке красные точки); записать координаты в форме (x;0)

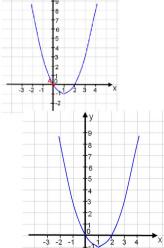
т.о. нули функции A(0;0) B(2;0)



6. Точки пересечения графика функции с осью ОУ.

Найти точку (точки) пересечения графика с осью ОУ (на рисунке красная точка); записать координаты в форме (0;у)

Т.о. точка пересечения с осью ОУ (0;0)



7. Четность/нечетность.

Графики четных функций симметричны относительно оси ОУ, графики нечетных функция симметричны относительно начала координат. Данный график не симметричен относительно оси ОУ, не симметричен относительно начала координат, значит он – общего вида.

Преобразования графиков функции

Правило 1

Прафик функции
$$y = f(x+a)$$
 есть график $y = f(x)$ сдвинутый при $a > 0$ влево $a < 0$ вправо $a = a$ в разраници параллельно оси $a = a$

Пример: В одной системе координат построить графики функций $v = x^3$; $v = (x-3)^3$ $v = (x+2)^3$

План построения:

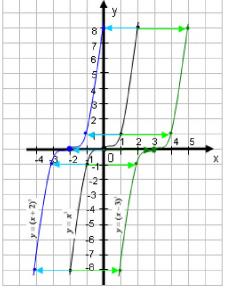
Построить график функции $y = x^3$ - это кубическая парабола, таблица значений абсцисс и ординат приведена ниже.

X	-2	-1	0	1	2
у	-8	-1	0	1	8

рафик функции $y = x^3$ на рисунке выделен черным цветом.

Построить график функции $y = (x-3)^3$ - сдвинуть вправо на 3 единицы график $y = x^3$ (на рисунке сдвиг показан зелеными стрелками, получившийся график функции $y = (x-3)^3$ выделен зеленым цветом)

Построить график функции $y = (x+2)^3$ - сдвинуть влево на 2 единицы график $y = x^3$ (на рисунке сдвиг показан голубыми стрелками, получившийся график функции $y = (x+2)^3$ выделен синим цветом)



Правило 2

Прафик функции
$$y = f(x) + b$$
 есть график $y = f(x)$ сдвинутый при $b > 0$ вверх $b < 0$ вниз $b = b$ единиц параллельно оси DY

Пример:

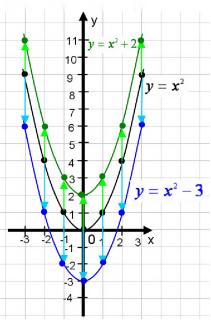
В одной системе координат построить графики функций $y = x^2$; $y = x^2 + 2$; $y = x^2 - 3$ План построения

1. Построить график функции $y = x^2$ это парабола, таблица значений абсцисс и ординат приведена ниже.

X	-3	-2	-1	0	1	2	3
У	9	4	1	0	1	4	9

рафик функции $y = x^2$ на рисунке выделен черным цветом.

- 2. Построить график функции $y=x^2+2$ сдвинуть вверх на 2 единицы график $y=x^2$ (на рисунке сдвиг показан зелеными стрелками, получившийся график функции $y=x^2+2$ выделен зеленым цветом)
- 3. Построить график функции $y=x^2-3$ сдвинуть вниз на 3 единицы график $y=x^2$ (на рисунке сдвиг показан голубыми стрелками, получившийся график функции $y=x^2-3$ выделен синим цветом)



Правило 3

График функции
$$y = m \cdot f(x)$$
 есть график $y = f(x)$ при $m > 1$ растянутый вдоль оси ОУ $0 < m < 1$ сэкатый

Пример:

В одной системе координат построить графики функций

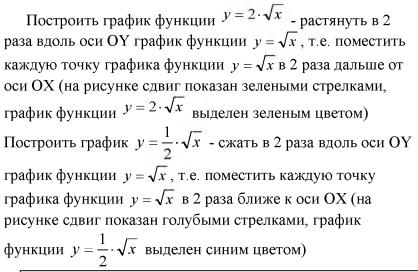
$$y = \sqrt{x}; \quad y = 2 \cdot \sqrt{x}; \quad y = \frac{1}{2} \cdot \sqrt{x}$$

План построения

Построить график функции $y = \sqrt{x}$;, таблица значений абсцисс и ординат приведена ниже.

X	0	1	4	9
y	0	1	2	3

График функции $y = \sqrt{x}$ изображен на рисунке черным цветом.



Правило 4

График функции
$$y = f(k \cdot x)$$
 есть график $y = f(x)$ при

 $k > 1$ сэкатый $0 < k < 1$ растянутый

Пример:

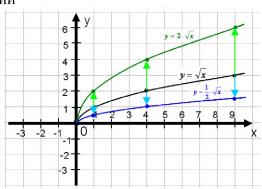
В одной системе координат построить графики функций

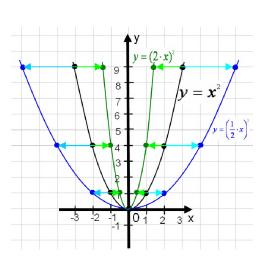
$$y = x^2$$
; $y = (2 \cdot x)^2$; $y = \left(\frac{1}{2} \cdot x\right)^2$

План построения

Построить график функции $y = x^2$ - это парабола, таблица значений абсцисс и ординат приведена в примере к правилу 2 (график функции $y = x^2$ изображен на рисунке черным цветом).

Построить график функции $y = (2 \cdot x)^2$ - сжать в 2 раза вдоль оси ОХ график функции $y = x^2$, т.е. расположить каждую точку графика функции $y = x^2$ в 2 раза дальше от оси ОҮ (сжатие показано на рисунке зелеными стрелками, график функции $y = (2 \cdot x)^2$





изображен на рисунке зеленым цветом).

Построить график функции $y = \left(\frac{1}{2} \cdot x\right)^2$ - растянуть

в 2 раза вдоль оси ОХ график функции $y=x^2$, т.е. расположить каждую точку графика функции $y=x^2$ в 2 раза ближе к оси ОҮ (растяжение показано на

рисунке голубым цветом, график функции $y = \left(\frac{1}{2} \cdot x\right)^2$

изображен синим цветом)

Правило 5

График функции y = -f(x) есть график y = f(x) зеркально отображенный от оси ОХ.

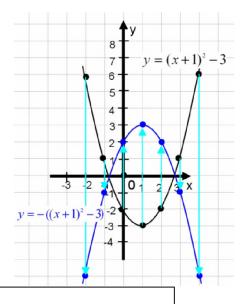
Пример:

В одной системе координат построить графики функций $y = (x-1)^2 - 3$; $y = -((x-1)^2 - 3)$

План построения

Чтобы построить график функции $y = (x-1)^2 - 3$ (график изображен на рисунке черным цветом), необходимо график функции $y = x^2$ сдвинуть вправо на 1 единицу, полученный график сдвинуть вниз на 3 единицы.

Построить график $y = -((x-1)^2 - 3)$ (график изображен на рисунке синим цветом), т.е. зеркально отобразить (процесс отображения показан на рисунке голубыми стрелками) предыдущий график $y = (x-1)^2 - 3$ от оси OX



Правило 6

График функции y = f(-x) есть график y = f(x) зеркально отображенный от оси ОУ.

Пример:

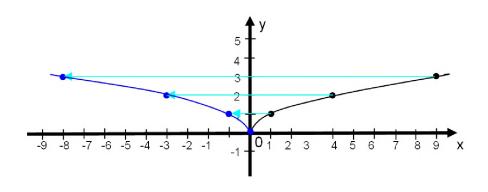
В одной системе координат построить графики функций

$$y = \sqrt{x}; \quad y = \sqrt{-x}$$

План построения

График функции $y = \sqrt{x}$ изображен на рисунке черным цветом.

Построить график $y = \sqrt{-x}$, т.е. зеркально отобразить (процесс отображения показан на рисунке голубыми стрелками) предыдущий график $y = \sqrt{x}$ от оси OY.



Раздел 4. Последовательности. Предел и непрерывность функции План изучения темы:

- 1. Последовательности. Способы задания и свойства числовых последовательностей.
- 2. Понятие о пределе последовательности и пределе функции.
- 3. Понятие предела функции в точке и бесконечности. Вычисление предела функции по виду ее графика.
- 4. Понятие о непрерывности функции. Предел и непрерывность функции.

Числовая последовательность $-\underline{\text{функция}}$ вида $y=f(x), x\in N$, где N- множество натуральных чисел (или функция натурального аргумента), обозначается y=f(n) или $y_1, y_2, ..., y_n, ...$ Значения $y_1, y_2, y_3, ...$ называют соответственно первым, вторым, третьим, ... членами последовательности.

Например, для функции $y = n^2$ можно записать:

$$y1 = 1^2 = 1;$$

 $y2 = 2^2 = 4;$
 $y3 = 3^2 = 9; ... y_n = n^2; ...$

Способы задания последовательности

1 способ аналитический

Последовательность задана аналитически, если задана формула ее n-го члена: $y_n = f(n)$.

<u>Пример.</u> $y_n = 2n - 1 - последовательность нечетных чисел: 1, 3, 5, 7, 9, ...$

2 способ описательный.

Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

<u>Пример</u> «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, ..., 1, ...

<u>Пример</u> «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3 способ рекуррентный.

Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n-й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова гесштеге — возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n-й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример
$$y_1 = 3$$
; $y_n = y_{n-1} + 4$, если $n = 2, 3, 4, \dots$ Здесь $y_1 = 3$; $y_2 = 3 + 4 = 7$; $y_3 = 7 + 4 = 11$;

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: $y_n = 4n - 1$.

Пример
$$y1 = 1$$
; $y2 = 1$; $y_n = y_{n-2} + y_{n-1}$, если $n = 3, 4, \dots$ 3десь: $y_1 = 1$; $y_2 = 1$; $y_3 = 1 + 1 = 2$; $y_4 = 1 + 2 = 3$; $y_5 = 2 + 3 = 5$; $y_6 = 3 + 5 = 8$;

Свойства числовых последовательностей.

Числовая последовательность — частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

Определение. Последовательность $\{y_n\}$ называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

$$y_1 < y_2 < y_3 < \dots < y_n < y_{n+1} < \dots$$

Определение. Последовательность $\{y_n\}$ называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

$$y_1 > y_2 > y_3 > \ldots > y_n > y_{n+1} > \ldots \; .$$

Возрастающие и убывающие последовательности объединяют общим термином монотонные последовательности.

<u>Пример</u> $y_1 = 1$; $y_n = n^2 -$ возрастающая последовательность.

$$y_n = (-1)^{n-1} \frac{1}{-}$$

 $y_n = (-1)^{n-1} \frac{1}{n}$ Пример $y_1 = 1$; $y_n = (-1)^{n-1} \frac{1}{n}$ — эта последовательность не является не возрастающей не vбывающей.

Определение. Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство $y_n = y_n + T$. Число Т называется длиной периода.

<u>Определение</u> Пусть каждому натуральному числу n сопоставлено вещественное число x_n . Тем самым заданы некоторые вещественные числа, определенным образом пронумерованные: $X_1, X_2, \dots X_n \dots$

тогда говорят – задана числовая последовательность.

 $x_1, x_2, ... x_n$... члены числовой последовательности

 x_n общий (n-й член последовательности)

 $\{x_n\}$ числовая последовательность

Определение Числовая последовательность считается заданной, если указано правило или закон, с помощью которого по номеру места в последовательности всегда можно назвать (вычислить) число, стоящее на этом месте, т.о. числовое значение члена последовательности x_n зависти от n, т.е. является функцией от n.

<u>Определение</u> Число A называется *пределом числовой последовательности* $\{a_n\}$, если для любого сколь угодно малого положительного числа $\xi > 0$ можно указать такое натуральное число N, что для всех членов последовательности с номерами n > Nвыполняется неравенство $|a_n - A| < \xi$ т.е.

$$\lim a_n = A \Longrightarrow (\forall \xi > 0)(\exists N \in N)(\forall n > N)(|a_n - A| < \xi)$$

Предел функции в бесконечности

Определение Число A называется пределом функции y = f(x) при x стремящемся к **бесконечности**, если для любого даже сколь угодно малого положительного числа $\xi > 0$, найдется такое положительное число S > 0 зависящее от $\xi : S = S(\xi)$, что для всех xтаких, что |x| > S, верно неравенство $|f(x) - A| < \xi$, т.е.

$$\lim_{x \to \infty} f(x) = A \Rightarrow (\forall \xi > 0)(\exists S = S(\xi))(\forall x : |x| > S)(|f(x) - A| < \xi)$$

Предел функции в точке

<u>Определение</u> Число A называется пределом функции y = f(x) при x стремящемся к x_0 , если для любого даже сколь угодно малого положительного числа $\xi > 0$, найдется такое положительное число $\delta > 0$ $\xi : \delta = \delta(\xi)$, что для всех $x \neq x_0$ таких, что $|x - x_0| < \delta$, верно неравенство $|f(x)-A| < \xi$, т.е.

$$\lim_{x \to x_0} f(x) = A \Longrightarrow (\forall \xi > 0)(\exists \delta = \delta(\xi) > 0)(\forall x \neq x_0 : |x - x_0| < \delta)(|f(x) - A| < \xi)$$

Свойства пределов.

Признаки существования пределов

Пусть $f(x), \varphi(x)$ - функции, для которых существуют $\lim_{x \to x_0(\infty)} f(x) = A, \lim_{x \to x_0(\infty)} \varphi(x) = B$

тогда справедливы следующие теоремы:

Теорема (1)	Теорема(2)
Функция не может иметь более одного	$\lim \left[f(x) + \varphi(x) \right] = A + B$
предела.	$x \rightarrow x_0(\infty)$
Теорема (3)	Теорема(4)
$\lim_{x \to x_0(\infty)} [f(x) \cdot \varphi(x)] = A \cdot B$	$\lim_{x \to x_0(\infty)} \left[\frac{f(x)}{\varphi(x)} \right] = \frac{A}{B}, B \neq 0$

Первый замечательный предел

Второй замечательный предел

$$\lim_{x \to 0} \frac{Sin \ x}{x} = 1$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \lim_{x \to 0} \left(1 + y \right)^{\frac{1}{y}} = e$$

Приемы вычисления пределов

Основное правило вычисления пределов. При вычислении пределов нужно вместо переменной в выражение, стоящее под пределом подставить значение к которому стремиться эта переменная, попытаться вычислить, используя свойства пределов, 1-й и 2-й замечательные пределы. Если получается неопределенность, то определить ее тип и устранить эту неопределенность (см ниже).

Раскрытие неопределенностей вида
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Если функция, стоящая под знаком предела является дробно-рациональной, то числитель и знаменатель необходимо разложить на множители, после выполнить сокращение.

Примеры раскрытия неопределенности вида $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ при вычислении пределов

Пример 1.
$$\lim_{x\to 1} \frac{2x^2-x-1}{(x-1)^2}$$

Решение:

$$\lim_{x \to 1} \frac{2x^2 - x - 1}{(x - 1)^2} = \left[\frac{0}{0} \right]$$

$$\lim_{x \to 1} \frac{2x^2 - x - 1}{(x - 1)^2} = \lim_{x \to 1} \frac{(2x + 1)(x - 1)}{(x - 1)^2} = \lim_{x \to 1} \frac{(2x + 1)}{(x - 1)} = \infty$$

Пример 2.

Решение:

$$\lim_{x \to 2} \frac{\sqrt{x+2} - \sqrt{6-x}}{x^2 - 4} = \left[\frac{0}{0} \right]$$

$$\lim_{x \to 2} \frac{\sqrt{x+2} - \sqrt{6-x}}{x^2 - 4} = \lim_{x \to 2} \frac{(\sqrt{x+2} - \sqrt{6-x})(\sqrt{x+2} + \sqrt{6-x})}{(x^2 - 4)(\sqrt{x+2} + \sqrt{6-x})} = \lim_{x \to 2} \frac{2x - 4}{(x^2 - 4)(\sqrt{x+2} + \sqrt{6-x})} = \lim_{x \to 2} \frac{2(x - 2)}{(x - 2)(x + 2)(\sqrt{x+2} + \sqrt{6-x})} = \lim_{x \to 2} \frac{2}{(x + 2)(\sqrt{x+2} + \sqrt{6-x})} = \frac{1}{8}$$

Раскрытие неопределенностей вида $\left\lceil \frac{\infty}{\infty} \right\rceil$

Если функция, стоящая под пределом – это отношение многочленов степеней п и m (где пнаивысшая степень числителя, m – наивысшая степень знаменателя), то удобно пользоваться следующей формулой:

$$\lim_{x \to 2} \frac{a_1 x^n + b_1 x^{n-1} + \dots + k_1 x + l_1}{a_2 x^m + b_2 x^{m-1} + \dots + k_2 x + l_2} = \begin{cases} 0, & ecnu \ n < m \\ \frac{a_1}{a_2}, & ecnu \ n = m \\ \infty, & ecnu \ n < m \end{cases}$$

<u>Примеры раскрытия неопределенности вида $\left[\frac{\infty}{\infty}\right]$ при вычислении пределов</u>

1) Вычислить $\lim_{x\to\infty} \frac{3x^2+2}{4x^5+x+1}$

<u>1) Решение</u>	<u>Пояснение</u>
$\lim_{x \to \infty} \frac{3x^2 + 2}{4x^5 + x + 1} = \left[\frac{\infty}{\infty}\right] = 0$	Воспользуемся правилом раскрытия неопределенности вида $\left[\frac{\infty}{\infty}\right]$ n=2, m=5, т.к. n <m, 0<="" th="" предел="" равен="" то=""></m,>

2) Вычислить $\lim_{x \to \infty} \frac{\sqrt[4]{x^9 + 1}}{x^2 + \sqrt{x}}$

2) Решение		Пояснение	
$\int_{-\infty}^{4} \sqrt{x^9 + 1} \lceil \infty \rceil$	Воспользуемся	формулой	правилом
$\lim_{x \to \infty} \frac{\sqrt{x^2 + \sqrt{x}}}{x^2 + \sqrt{x}} = \left[\frac{1}{\infty} \right] = \infty$	раскрытия неопро	еделенности вида	$\left[\frac{\infty}{\infty}\right]$
	$n = \frac{9}{4}, m = 2, \text{ T.K. } n > $	>т, то предел рав	ен ∞

3) Вычислить $\lim_{x \to +\infty} \frac{2^{x+1} + 3^{x+1}}{2^x + 3^x}$

$x \to +\infty$ 2" + 3" 3) Решение	Пояснение		
$\lim_{x \to +\infty} \frac{2^{x+1} + 3^{x+1}}{2^x + 3^x} = \left[\frac{\infty}{\infty}\right] =$	разделим числитель и знаменатель на 3^x (выбор функции 3^x объясняется тем, что функция 3^x растет быстрее функции 2^x		
$\lim_{x \to +\infty} \frac{\frac{2 \cdot 2^x}{3^x} + \frac{3 \cdot 3^x}{3^x}}{\frac{2^x}{3^x} + \frac{3^x}{3^x}} =$	преобразуем числитель и знаменатель		
$\lim_{x \to +\infty} \frac{2 \cdot \left(\frac{2}{3}\right)^x + 3}{\left(\frac{2}{3}\right)^x + 1} = 3$	$ при x \to +\infty, \left(\frac{2}{3}\right)^x \to 0 $		

4) Вычислить $\lim_{x\to\infty} \frac{4x + Sin x}{x - Cos x}$

4) Решение	<u>Пояснение</u>
$\lim_{x \to \infty} \frac{4x + \sin x}{x - \cos x} = \left[\frac{\infty}{\infty}\right] =$	разделим числитель и знаменатель на х, чтобы преобразовать (подвести) к 1-му замечательному пределу
$\lim_{x \to \infty} \frac{\frac{4x}{x} + \frac{\sin x}{x}}{\frac{x}{x} - \frac{\cos x}{x}} =$	выполним сокращения
$4 + \frac{\sin x}{}$	$npu \ x \to \infty$, $\frac{Sin \ x}{x} \to 0$ (как отношение ограниченной функции Sin x к бесконечно большой)
$\lim_{x \to \infty} \frac{x}{1 - \frac{Cos x}{x}} = 4$	$npu \ x \to \infty, \frac{Cos x}{x} \to 0$ (как отношение ограниченной функции
	Соs x к бесконечно большой см)

Определение Пусть функция определена на некотором интервале , для которого внутренняя точка. *Функция называемся непрерывной в мочке* , если существует предел при и этот предел равен значению , то $x \to x_0$, $x \to x_0$,

Определение Пусть функция определена на некотором полуинтервале , для f(x) которого - левый конец. **Функция** называется непрерывной справа в точке , если существует предел при и этот предел равен значению $f(x_0)$, то $\lim_{x \to x_0 +} f(x) = f(x_0)$.

Определение Пусть, функция определена на некотором полуинтервале , для которого -- правый конец. Функция называется непрерывной слева в точке , $f(x) = x_0 - f(x)$ если существует предел при и этот предел равен значению , то есть $\lim_{x \to \infty} f(x) = f(x_0).$

Определение Φ ункция t_0 тогда и только тогда непрерывна в точке t_0 , когда она непрерывна в точке справа и слева, то есть когда выполнены следующие условия:

- 1) функция f(x) определена в точке x_0 и в некоторой окрестности этой точки;
- 2) существует предел значений функции слева: $\lim_{x \to x_0^-} f(x) = f(x_0^-)$;
- 3) существует предел значений функции справа: $\lim_{x \to x_0-} f(x) = f(x_0+)$; 3) зти два предела соргать :
- 4) эти два предела совпадают между собой и со значением функции в x_0 $f(x_0-)=f(x_0+)=f(x_0)$

Пример 1. Функция f(x) определена следующим образом, исследовать на непрерывность данную функцию:

$$f(x) = \begin{cases} 0 & \text{при } x < 0 \\ x & \text{при } 0 \le x < 1 \\ -x^2 + 4x - 2 & \text{при } 1 \le x < 3 \\ 4 - x & \text{при } x \ge 3 \end{cases}$$

Будет ли эта функция непрерывной в каждой из граничных точек её ветвей, то есть в точках x = 0, x = 1, x = 3?

Решение. Проверяем все три условия непрерывности функции в каждой граничной точке. Первое условие соблюдается, так как то, что функция определена в каждой из граничных точек, следует из определения функции. Осталось проверить остальные два условия. Точка x = 0. Найдём левосторонний предел в этой точке:

$$\lim_{x \to 0-0} f(x) = f(0) = 0$$

Найдём правосторонний предел:

$$\lim_{x \to 0+0} f(x) = 0$$

Предел функции и значение функции в точке x=0 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

$$\lim_{x\to 0} f(x) = 0;$$

$$f\left(x\right) =0.$$

Как видим, предел функции и значение функции в точке x = 0 равны. Следовательно, функция является непрерывной в точке x = 0.

Точка x = 1. Найдём левосторонний предел в этой точке:

$$\lim_{x\to 1-0} f(x) = 1$$

Найдём правосторонний предел:

$$\lim_{x \to 1+0} f(x) = \lim_{x \to 1+0} (-x^2 + 4x - 2) =$$

$$=-1+4-2=1$$
.

Предел функции и значение функции в точке x = 1 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} (-x^2 + 4x - 2) =$$

$$=-1+4-2=1$$
:

$$f(x) = -1 + 4 - 2 = 1.$$

Предел функции и значение функции в точке x = 1 равны. Следовательно, функция является непрерывной в точке x = 1.

Точка x = 3. Найдём левосторонний предел в этой точке:

$$\lim_{x \to 3-0} f(x) = \lim_{x \to 3-0} \left(-x^2 + 4x - 2 \right) =$$

$$= -9 + 12 - 2 = 1$$
.

Найдём правосторонний предел:

$$\lim_{x \to 3+0} f(x) = \lim_{x \to 3+0} (4-x) =$$

$$=4-3=1$$
.

Предел функции и значение функции в точке x = 3 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} (4 - x) = 4 - 3 = 1;$$

$$f(x) = 4 - 3 = 1.$$

Предел функции и значение функции в точке x = 3 равны. Следовательно, функция является непрерывной в точке x = 3.

Основной вывод: данная функция является непрерывной в каждой граничной точке.

Пример 2. Установить, непрерывна ли функция $y = x^2 - x - 2$ в точке x = 2.

Решение. Как мы знаем из урока <u>Область определения функции</u>, областью определения степенной функции, если показатель степени положительный, является множество всех действительных чисел, то есть $]-\infty$; $+\infty[$. Первое из слагаемых в выражении нашей функции - икс во второй степени, второе - икс в первой степени. Третье слагаемое - постоянная. Область определения постоянной - также вся числовая прямая. Таким образом, область определения данной функции - вся числовая прямая.

Точка x = 2 принадлежит области определения. Первое условие непрерывности функции в точке выполняется.

Найдём левый и правый пределы функции в этой точке:

$$\lim_{x \to 2+0} (x^2 - x - 2) = (2+0)^2 + (2+0) - 2 =$$

$$= 4 + 2 - 2 = 4.$$

$$\lim_{x \to 2-0} (x^2 - x - 2) = (2-0)^2 + (2-0) - 2 =$$

$$= 4 + 2 - 2 = 4.$$

Правый и левый пределы равны. Второе условие непрерывности функции в точке выполняется.

Находим значение функции в точке x = 2:

$$y(2)=2^2+2-2=4$$

Предел функции в точке x=2 равен значению функции в этой точке. Все три условия непрерывности функции в точке выполняются. Данная функция непрерывна в точке x=2.

Раздел 5 Дифференциальное исчисление

Тема 5.1. Понятие производной

План изучения темы (перечень вопросов, обязательных к изучению):

- 1. Понятие о производной функции. Правила дифференцирования (Производные суммы, разности, произведения, частного).
- 2. Таблица производных основных элементарных функций.
- 3. Геометрический, физический, экономический смысл производной.
- 4. Вторая производная.
- 5. Вычисление производной.

Определение. Пусть функция y = f(x) определена в точках x_0 и x_1 . Разность $(x_1 - x_0)$ называют приращением аргумента Δx (при переходе от точки x_0 к x_1), а разность $(f(x_1) - f(x_0))$ называют приращением функции Δy т.о. $\Delta y = f(x_0 + \Delta x) - f(x_0)$ Определение. Пусть функция y = f(x) определена в некотором интервале, содержащем внутри себя точку x_0 . Дадим аргументу x приращение Δx такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции Δy (при переходе от точки x_0 к точке $(x_0 + \Delta x)$) и составим отношение $\frac{\Delta y}{\Delta x}$. Если существует предел этого отношения при $\Delta x \rightarrow 0$, то указанный предел называют производной функции y = f(x) в точке x_0 , и обозначают его $f'(x_0)$.

т.е.
$$f'(x_0) = \lim_{\Delta t \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Таблица производных

Функция	Производная
y = x	y'=1
$y = x^{\alpha}$	$y' = \alpha \cdot x^{\alpha - 1}$
$y = \sqrt{x}$	$y' = \frac{1}{2\sqrt{x}}$
$y = \frac{1}{\sqrt{x}}$	$y' = -\frac{1}{2x\sqrt{x}}$
$y = \frac{1}{x}$	$y' = -\frac{1}{x^2}$
$y = a^x$	$y' = a^x \cdot \ln a$
$y = e^x$	$y'=e^x$
$y = \log_a x$	$y' = \frac{1}{x \cdot \ln a}$
$y = \ln x$	$y' = \frac{1}{x}$

Функция	Производная
$y = \sin x$	$y' = \cos x$
$y = \cos x$	$y' = -\sin x$
y = tgx	$y' = \frac{1}{\cos^2 x}$
y = ctgx	$y' = -\frac{1}{\sin^2 x}$
$y = \arcsin x$	$y' = \frac{1}{\sqrt{1 - x^2}}$
$y = \arccos x$	$y' = -\frac{1}{\sqrt{1 - x^2}}$
y = arctgx	$y' = \frac{1}{1+x^2}$
y = arcctgx	$y' = -\frac{1}{1+x^2}$

Правила дифференцирования

1)
$$C' = 0$$
 ($\partial e C = const$)

2)
$$(CU)' = C \cdot (U)'$$

3)
$$(U+V)' = (U)' + (V)'$$

4)
$$(U \cdot V)' = (U)' \cdot (V) + (U) \cdot (V)'$$

5)
$$\left(\frac{U}{V}\right)' = \frac{(U)' \cdot (V) - (U) \cdot (V)'}{(V)^2}$$

Примеры вычисления производных

Пример 1. Найдите производную от функции $y = x^5$

Решение
$$y' = (x^5)' = 5x^{5-1} = 5x^4$$

Пример 2. Найдите производную от функции $y = 2x^3 - 3x$

Решение
$$y' = (2x^3 - 3x)' = (2x^3)' - (3x)' = 2 \cdot (x^3)' - 3 \cdot x' = 2 \cdot 3x^{3-1} - 3 \cdot 1 = 6x^2 - 3$$

Пример 3. Найдите производную от функции $y = (x^3 - 2) \cdot (x^2 + x + 1)$

Решение

$$y' = ((x^{3} - 2) \cdot (x^{2} + x + 1))' = (x^{3} - 2)' \cdot (x^{2} + x + 1) + (x^{2} + x + 1)' \cdot (x^{3} - 2) = ((x^{3})' - 2') \cdot (x^{2} + x + 1) + ((x^{2})' + x' + 1') \cdot (x^{3} - 2) = (3x^{2}) \cdot (x^{2} + x + 1) + (2x + 1) \cdot (x^{3} - 2) = 3x^{4} + 3x^{3} + 3x^{2} + 2x^{4} + x^{3} - 4x - 2 = 5x^{4} + 4x^{3} + 3x^{2} - 4x - 2$$

Пример 4. Найдите производную от функции $y = \frac{x^2}{x^2 + 1}$

Решение

$$y' = \left(\frac{x^2}{x^2 + 1}\right)' = \frac{\left(x^2\right)' \cdot \left(x^2 + 1\right) - \left(x^2 + 1\right)' \cdot x^2}{\left(x^2 + 1\right)^2} = \frac{2x \cdot \left(x^2 + 1\right) - 2x \cdot x^2}{\left(x^2 + 1\right)^2} = \frac{2x^3 + 2x - 2x^3}{\left(x^2 + 1\right)^2} = \frac{2x}{\left(x^2 + 1\right)^2}$$

Определение Если y есть функция от u, т.е. y = f(u), где u в свою очередь есть функция от аргумента x, т.е. $u = \varphi(x)$, то если y зависит от x через промежуточный аргумент u, то y называется сложной функцией от x (функцией от функции). Таким образом $y = f(\varphi(x))$ - сложная функция $u = \varphi(x)$ - промежуточная функция, x - независимый аргумент.

Примеры сложных функций

1)
$$f(x) = (x^2 + 2x + 5)^4$$

 $u = x^2 + 2x + 5$ - промежуточный аргумент

$$f(u) = u^4$$

2)
$$f(x) = \sqrt{x+2}$$

u = x + 2 - промежуточный аргумент

$$f(u) = \sqrt{u}$$

3)
$$f(x) = Sin\left(x + \frac{1}{2}\right)$$

$$u = x + \frac{1}{2}$$
 - промежуточный аргумент

$$f(u) = Sin(u)$$

4)
$$f(x) = e^{3x-1}$$

$$u = 3x - 1$$
 - промежуточный аргумент

$$f(u) = e^{u}$$

<u>Определение</u> *Производная сложной функции* равна произведению ее производной по промежуточному аргументу на производную этого аргумента по независимой переменной.

T.e. если
$$f(x) = f(\varphi(x))$$
, где $u = \varphi(x)$, то $f'(x) = f'(u) \cdot u'$

Примеры вычисления производной сложной функции

Пример 1. Найдите производную от сложной функции $y = (2x+1)^{10}$

Решение
$$y' = [(2x+1)^{10}] = 10(2x+1)^{10-1} \cdot (2x+1)' = 10(2x+1)^9 \cdot (2) = 20(2x+1)^9$$

Пример 2. Найдите производную от сложной функции $y = \frac{1}{4}\cos 2x$

Решение
$$y' = \left(\frac{1}{4}\cos 2x\right)' = \frac{1}{4}(\cos 2x)' = \frac{1}{4}(-\sin 2x)\cdot(2x)' = \frac{1}{4}(-\sin 2x)\cdot2 = -\frac{1}{2}\sin 2x$$

Пример 3. Найти производную функции f(x) $f(x) = (x^2 + 2x + 5)^4$

$$f'(x) = ((x^{2} + 2x + 5)^{4})' = 4 \cdot (x^{2} + 2x + 5)^{4-1} \cdot (x^{2} + 2x + 5)' = 4 \cdot (x^{2} + 2x + 5)^{3} \cdot (2x^{2-1} + 2 \cdot 1 + 0) = 4 \cdot (x^{2} + 2x + 5)^{3} \cdot (2x + 2)$$

Пример 4. Найти производную функции f(x) = Sin(3x-5)

Решение

$$f'(x) = \left(Sin(3x-5)\right)' = Cos(3x-5) \cdot (3x-5)' = Cos(3x-5) \cdot (3\cdot 1 - 0) = Cos(3x-5) \cdot 3 = 3 \cdot Cos(3x-5)$$

Производная от производной y' функции y называется *второй производной* этой функции и обозначается y'' или f''(x):

$$y'' = (y')';$$
 $f''(x) = [f(x)]'.$

Пример

1) Найти вторую производную функции $y = 3x^3 - 6x^2 + 7x - 1$.

Решение

$$y' = (3x^3 - 6x^2 + 7x - 1)' = 9x^2 - 12x + 7;$$

 $y'' = (y')' = (9x^2 - 12x + 7)' = 18x - 12.$

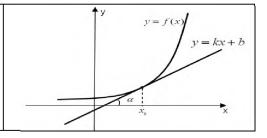
Тема 5.2 Приложение производной

План изучения темы

- 1. Геометрический, физический и экономический смысл производной.
- 2. Уравнение касательной к графику функции.
- 3. Примеры использования производной для нахождения наилучшего решения в прикладных задачах.
- 4. Геометрический и физический смысл второй производной.
- 5. Применение производной к исследованию функций и построению графиков.

Геометрический смысл производной

Если y=f(x) функция, и y=kx+b касательная проведенная к функции в точке $x_{_{0}}$, то $f'(x_{_{0}})=k$ или $f'(x_{_{0}})=tg\,\alpha$, где α - угол наклона касательной с осью ОХ (с ее положительным направлением)



Физический смысл производной

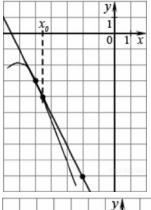
Если s=s(t) - закон, описывающий некоторый процесс (например скорость движения тела), то $s'(t_0)$ - мгновенная скорость протекания этого процесса, т.е. скорость в момент времени t_0 .

Экономический смысл производной

Если u = u(t) - отражает количество произведенной продукции в зависимости от времени, тогда $u'(t_0)$ - производительность труда в момент времени t_0 .

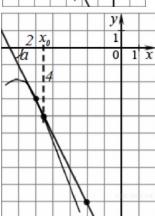
Примеры применения производной

Пример 1. На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0



Решение

Так как по геометрическому смыслу производной $f'(x_0)$ = $tg\alpha$, то нам нужно найти тангенс угла наклона касательной. Рассмотрим рисунок: Нужно также отметить, что, на самом деле, угол между касательной и направлением оси Ох - тупой, следовательно, нам необходимо принять производную со знаком «минус». Получаем: $f'(x_0)$ = $-tg\alpha$ =-2/4=-1/2 Ответ: -1/2 или -0,5.



Пример 2.Объём продукции u, выпускаемой рабочим в течение рабочего дня,

выражается функцией
$$u(t) = -\frac{5}{6}t^3 + \frac{15}{2}t^2 + 100t + 50$$
 , где t – время, ч; причём $1 \le t \le 8$.

Необходимо вычислить производительность труда и скорость её изменения через 1 ч после начала и за 1 ч до окончания рабочего дня.

Решение

Производительность труда z(t) выражается формулой z(t) = u'(t). Тогда $z(t) = u'(t) = -2.5t^2 + 15t + 100$

Производительность труда через 1 ч после начала работы

$$z(1) = -2.5 \cdot 1^2 + 15 \cdot 1 + 100 = 112.5$$
 (v.e.)

Производительность труда за 1 ч до окончания работы

$$z(7) = -2.5 \cdot 7^2 + 15 \cdot 7 + 100 = 82.5$$
 (y.e.)

Скорость изменения производительности труда z'(t) = -5t + 15 3начит, $z'(1) = -5 \cdot 1 + 15 = 10$, $z'(7) = -5 \cdot 7 + 15 = -20$

Пример 3. Найти мгновенную скорость движения материальной точки в момент времени t0=2ct0=2c, если точка движется по закону s(t)=4t2+2t+1

Решение

Скорость точки равна производной пути по времени:

$$v(t)=s'(t)=(4t2+2t+1)'=8t+2v(t)=s'(t)=(4t2+2t+1)'=8t+2$$

Мгновенная скорость в момент времени t0=2t0=2:

$$v(t0)=v(2)=8\cdot 2+2=16+2=18$$

v = 18 m/c

Алгоритм составления уравнения касательной к графику функции y = f(x) в точке с абсциссой x.

- 1) Вычислить $f(x_{\scriptscriptstyle 0})$ (значение функции в точке $x_{\scriptscriptstyle 0}$).
- 2) Вычислить f'(x) (производную функции)
- 3) Вычислить $f'(x_{\scriptscriptstyle 0})$ (значение производной в точке $x_{\scriptscriptstyle 0}$)
- 4) Составить уравнение по формуле $y = f(x_0) + f'(x_0)(x x_0)$

Пример составления уравнения касательной

Пример 4. Составить уравнение касательной к графику функции $y = x^2 - 2x$ в точке с абсциссой $x_0 = 3$

Решение

Выполним алгоритм

1)
$$f(x_0) = f(3) = 3^2 - 2 \cdot 3 = 9 - 6 = 3$$

2)
$$f'(x) = (x^2 - 2x)' = (x^2)' - (2x)' = 2x - 2$$

3)
$$f'(x_0) = f'(3) = 2 \cdot 3 - 2 = 6 - 2 = 4$$

4)
$$y = f(x_0) + f'(x_0)(x - x_0) = 3 + 4(x - 3) = 3 + 4x - 12 = 4x - 9$$

Ответ: y = 4x - 9

<u>Алгоритм нахождения наибольшего и наименьшего</u> <u>значений функции на отрезке</u>

- 1) Найти производную функции.
- 2) Найти критические точки, т.е. точки в которых производная равна нулю или не существует.
- 3) Из точек, найденных в пункте 2 выбрать те, которые принадлежат заданному отрезку.
- 4) Вычислить значение функции в выбранных точках и на концах отрезка.
- 5) Из найденных значений в пункте 4 выбрать наибольшее это и будет наибольшее значение функции и наименьшее это и будет наименьшее значение функции на отрезке.

Пример 5.

Найти наибольшее и наименьшее значение функции $y = x^3 - 3x^2 - 45x + 1$ на отрезке [-4;6]

Решение

- 1) Найдем производную $y' = (x^3 3x^2 45x + 1)' = 3x^2 6x 45$
- 2) Найдем критические точки

$$f'(x) = 0 \Rightarrow 3x^2 - 6x - 45 = 0$$

$$a = 3$$
; $b = -6$; $c = -45$

$$D = b^2 - 4ac = (-6)^2 - 4 \cdot 3 \cdot (-45) = 36 + 540 = 576$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-6) \pm \sqrt{576}}{2 \cdot 3} = \frac{6 \pm 24}{6}; \quad x_1 = 5, \quad x_2 = -3$$

Из критических точек выберем те, которые принадлежат заданному отрезку $\frac{1}{2} = \frac{1}{2} = \frac{$

$$x_1 = 5 \notin [-4;6] x_2 = -3 \in [-4;6]$$

3) Найдем значение функции в выбранной точке и на концах отрезка

$$f(-3) = (-3)^3 - 3 \cdot (-3)^2 - 45 \cdot (-3) + 1 = -27 - 27 + 135 + 1 = 82$$

$$f(-4) = (-4)^3 - 3 \cdot (-4)^2 - 45 \cdot (-4) + 1 = -64 - 48 + 180 + 1 = 69$$

$$f(6) = 6^3 - 3 \cdot 6^2 - 45 \cdot 6 + 1 = 216 - 108 - 270 + 1 = -161$$

Ответ:
$$f_{nau \delta}(-3) = 82$$
; $f_{nau M}(6) = -161$

Применение производной к исследованию функции для построения ее графика

Схема исследования

- 1) Найти область определения функции (все значения аргумента x, при которых функция существует)
- 2) Определить четность/нечетность функции: если f(-x)=f(x), то функция четная (графики четных функций симметричны относительно оси OY); если f(-x)=-f(x), то функция нечетная (графики нечетных функций симметричны относительно начала координат).
- 3) Найти нули функции, т.е. точки пересечения графика с осью OX (приравнять уравнение функции к нулю и решить получавшееся уравнение).
- 4) Найти точки пересечения с осью OY (в уравнение функции вместо x подставить ноль и вычислить).
- 5) Исследовать функцию на наличие асимптот.

Если $\lim_{x \to a} f(x) = b$, то прямая y = b является горизонтальной асимптотой;

Если $f(x) = \frac{p(x)}{q(x)}$ (т.е. является дробно рациональной функцией) и при x = a знаменатель

обращается в нуль, а числитель отличен от нуля, то x = a вертикальная асимптота.

6) Исследовать функцию на монотонность и точки экстремума

Подробное описание Краткая запись Найти производную функции Найти f'(x)Найти критические точки, т.е. точки в Найти такие значения x, для которых которых производная равна нулю или не $f'(x_0) = 0$ или $f'(x_0)$ не существует. существует. f'(x) f(x) f'(x) f'(xНа числовую прямую нанести точки из пункта 2 и определить знак производной на каждом получившемся промежутке; сделать вывод о промежутках возрастания и убывания, точках максимума и минимума. Вычислить значение функции в точках максимума и минимума. Замечание: точка x_3 не является точкой экстремума, т.к. в это й точке производная не меняет знак; точка x_{i} не является точкой экстремума, т.к. в этой точке функция не существует, об

7) Учитывая полученные в ходе исследования свойства построить график функции.

Пример 6. Исследовать функцию $y = \frac{x}{1+x^2}$ и построить ее график.

Решение

1) Найдем область определения функции $f(x) = \frac{x}{1+x^2}$

этом свидетельствует незакрашенная точка

$$D(f) = (-\infty; +\infty)$$

2) Исследуем функцию на четность

$$f(-x) = \frac{-x}{1 + (-x)^2} = -\frac{x}{1 + x^2} = -f(x) \Rightarrow \phi$$
ункция нечетная

График функции симметричен относительно начала координат.

3) Найдем нули функции

$$\frac{x}{1+x^2} = 0$$
$$x = 0 \quad 1+x^2 \neq 0$$

т.о. (0;0) – точка пересечения с осью OX.

4) Найдем точки пересечения с осью ОУ

$$f(0) = \frac{0}{1+0^2} = 0$$

т.о. (0;0) – точка пересечения с осью OY.

5) Исследуем функцию на наличие асимптот

$$\lim_{x \to \infty} \frac{x}{1+x^2} = \lim_{x \to \infty} \frac{x}{x\left(\frac{1}{x}+x\right)} = \lim_{x \to \infty} \frac{1}{\left(\frac{1}{x}+x\right)} = 0 \Rightarrow y = 0$$
 горизонтальная асимптота

6) Исследуем функцию на монотонность и точки экстремума

6.1) Найдем производную функции

$$f'(x) = \left(\frac{x}{1+x^2}\right)' = \frac{(x)'(1+x^2) - x(1+x^2)'}{(1+x^2)^2} = \frac{1 \cdot (1+x^2) - x(0+2x)}{(1+x^2)^2} = \frac{1+x^2 - 0 - 2x^2}{(1+x^2)^2} = \frac{1-x^2}{(1+x^2)^2}$$

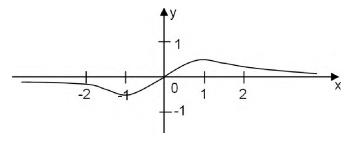
6.2) Найдем критические точки

$$f'(x) = 0 \Rightarrow \frac{1 - x^2}{(1 + x^2)^2} = 0$$
$$1 - x^2 = 0 \quad (1 + x^2)^2 \neq 0$$
$$x = 1 \quad x = -1$$

f'(x) не существует $\Rightarrow \frac{1-x^2}{(1+x^2)^2}$ не существует нет таких точек

6.3) $f'(x) \xrightarrow{-1} + 1$ f(x)6.4) $1 \xrightarrow{min} max$ тремума $f(-1) = \frac{-1}{1 + (-1)^2} = -\frac{1}{2}, m.o. f_{min}(-1) = -\frac{1}{2} = -0.5$ $f(1) = \frac{1}{1 + 1^2} = \frac{1}{2}, m.o. f_{max}(1) = \frac{1}{2} = 0.5$

Имея полученные данные о функции, построим график.



Раздел 6. Интегральное исчисление

Тема 6.1. Неопределенный интеграл

План изучения темы:

- 1. Первообразная и неопределенный интеграл.
- 2. Значения интегралов для некоторых функций. Свойства интегралов.
- 3. Методы вычисления неопределенного интеграла.

Первообразная и неопределенный интеграл

Определение. Функция F(x) называется **первообразной** для функции f(x) на промежутке X, если в каждой точке x этого промежутка F'(x) = f(x)

Теорема. Если F(x) - первообразная для функции f(x) на промежутке X, то у функции f(x) существует бесконечное множество первообразных и все они имеют вид F(x) + C.

<u>Определение</u>. Совокупность всех первообразных для функции f(x) на промежутке X называется *неопределенным интегралом* и обозначается $\int f(x) dx$, т.о.

$$\int f(x)dx = F(x) + C.$$

Значения интегралов для некоторых функций. Свойства интегралов.

Табличные интегралы

$$1) \qquad \int dx = x + C$$

$$2) \qquad \int x^n dx = \frac{x^n}{n+1} + C$$

3)
$$\int x^{-1} dx = \int \frac{dx}{x} = \ln|x| + C$$

$$4) \qquad \int \ell^x dx = \ell^x + C$$

$$5) \qquad \int a^x dx = \frac{a^x}{\ln a} + C$$

$$6) \qquad \int \sin x dx = -\cos x dx + C$$

$$\int \cos x dx = \sin x + C$$

$$8) \qquad \int \frac{dx}{\cos^2 x} = tgx + C$$

9)
$$\int \frac{dx}{\sin^2 x} = -ctgx + C$$

$$10) \quad \int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$

$$11) \int \frac{dx}{1+x^2} = arctgx + C$$

$$12) \int \sqrt{x} dx = \frac{2}{3} x \sqrt{x} + C$$

$$13) \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C$$

Свойства неопределенного интеграла

1) Постоянный множитель можно выносить за знак интеграла, т.е.

$$\int \alpha \cdot f(x) dx = \alpha \cdot \int f(x) dx$$

2) Интеграл суммы нескольких функций равен сумме интегралом этих функций, т.е.

$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

Методы вычисления неопределенного интеграла

Примеры вычисления неопределенного интеграла

Пример 1. Вычислить $\int 3Cos x dx$

Решение $\int 3\cos x \, dx = 3 \int \cos x \, dx = 3 \cdot \sin x + C$

Пример 2. Вычислить $\int (x^5 + e^x) dx \int x^5 dx + \int e^x dx = \frac{x^{5+1}}{5+1} + e^x + C$

Решение
$$\int (x^5 + e^x) dx = \int x^5 dx + \int e^x dx = \frac{x^{5+1}}{5+1} + e^x + C = \frac{x^6}{6} + e^x + C$$

Одним из наиболее мощных методов интегрирования является метод замены переменной в интеграле. Поясним суть этого метода. Пусть F'(x) = f(x), тогда

$$\int f(x) dx = \int F'(x) dx = \int d(F(x)) = F(x) + C.$$

Но в силу инвариантности формы дифференциала равенство $d(F(x)) = F'(x) \, dx = f(x) \, dx$ остается справедливым и в случае, когда x — промежуточный аргумент, т.е. $x = \varphi(t)$. Это значит, что формула $\int f(x) \, dx = F(x) + C$ верна и при $x = \varphi(t)$. Таким образом,

$$\int f(\varphi(t)) d(\varphi(t)) = F(\varphi(t)) + C \int_{\mathcal{A}} \int f(\varphi(t)) \varphi'(t) dt = F(\varphi(t)) + C \int_{\mathcal{A}} f(\varphi(t)) d(\varphi(t)) d(\varphi(t)) d(\varphi(t)) d(\varphi(t)) + C \int_{\mathcal{A}} f(\varphi(t)) d(\varphi(t)) d(\varphi(t)) d(\varphi(t)) d(\varphi(t)) d(\varphi(t)) d(\varphi(t)) + C \int_{\mathcal{A}} f(\varphi(t)) d(\varphi(t)) d(\varphi(t$$

Итак, если F(t) является первообразной для f(x) на промежутке X, а $x=\varphi(t)$ дифференцируемая на промежутке T функция, значения которой принадлежат X, то F(t) первообразная для $f(\varphi(t))\varphi'(t),\ t\in T$, и, следовательно,

$$\int f(\varphi(t))\varphi'(t) dt = \int f(x) dx.$$

Эта формула позволяет свести вычисление интеграла $\int f(\varphi(t)) \varphi'(t) \, dt$ к вычислению интеграла $\int f(x) \, dx$. При этом мы подставляем вместо $\varphi(t)$ переменную x, а вместо $\varphi'(t) \, dt$ дифференциал этой переменной, т. е. dx. Поэтому полученная формула называется формулой замены переменной под знаком неопределенного интеграла. Она используется на практике как "слева направо", так и "справа налево". Метод замены переменной позволяет сводить многие интегралы к табличным. После вычисления интеграла $\int f(x) \, dx$ надо снова заменить x на $\varphi(t)$.

Пример 1. Вычислим
$$\int \cos 2t \, dt$$

Решение. Введем новую переменную x, положив 2t=x.

Тогда
$$2\,dt=dx,\;dt=rac{1}{2}\,dx$$
 и, следовательно,

Замечание. Вычисление короче записывают так:

$$\int \cos 2t \ dt = \frac{1}{2} \int \cos 2t \ d(2t) = \frac{1}{2} \sin 2t + C.$$

Пример 2. Найти интеграл
$$\int \frac{(2 \ln x + 3)^1}{x} dx$$

Решение. Перепишем данный интеграл в виде $\int (2 \ln x + 3)^{1} \cdot \frac{1}{x} dx$. Так как производная выражения $2 \ln x + 3$ равна 2/x, а второй множитель 1/x отличается от этой производной только постоянным коэффициентом 2, то нужно применить подстановку $2 \ln x + 3 = t$.

Тогда
$$2 \cdot \frac{dx}{x} = dt$$
, $\frac{dx}{x} = \frac{1}{2}dt$. Следовательно,

$$\int (2\ln x + 3)^3 \cdot \frac{1}{x} dx = \int t^3 \cdot \frac{1}{2} dt = \frac{1}{2} \int t^3 dt = \frac{1}{8} t^4 + C = \frac{1}{8} (2\ln x + 3)^4 + C$$

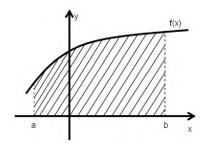
Тема 6.2. Определенный интеграл и его приложение

План изучения темы

- 1. Понятие определенного интеграла. Формула Ньютона—Лейбница.
- 2. Приемы вычисления определенного интеграла.
- 3. Применение определенного интеграла для нахождения площади криволинейной трапеции.

Понятие определенного интеграла. Формула Ньютона—Лейбница

Определение. В декартовой системе координат фигуру, ограниченную осью OX, прямыми $x=a, \quad x=b$ и графиком непрерывной, неотрицательной на отрезке [a;b] функции y=f(x) называют криволинейной трапецией (криволинейная трапеция выделена на рисунке штриховкой).



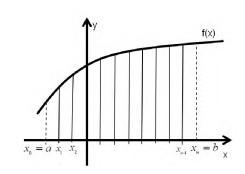
Рассмотрим задачу, приводящую к понятию неопределенного интеграла.

Задача.

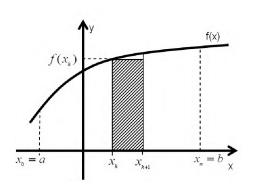
Вычислить площадь криволинейной трапеции.

Решение.

Пусть $x_{_{0}}=a; x_{_{n}}=b$. Точками $x_{_{1}},x_{_{2}}...x_{_{n-1}}$ разобьем отрезок [a;b] (основание криволинейной трапеции) на n равных частей. Проведем через точки $x_{_{1}},x_{_{2}}...x_{_{n-1}}$ прямые параллельные оси OY. Тогда заданная криволинейная трапеция разобьется на n частей – узеньких полосок. Площадь всей криволинейной трапеции равна сумме площадей всех полосок.



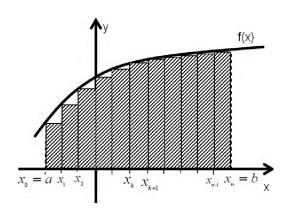
Рассмотрим отдельно k -ю полоску, заменим ее прямоугольником, основанием которого служит отрезок $\left[x_{_k}; x_{_{k+1}}\right]$ и высотой $f(x_{_k})$. Площадь этого прямоугольника $S_{_k} = f(x_{_k}) \cdot \Delta x_{_k}$, где $\Delta x_{_k} = x_{_{k+1}} - x_{_k}$ (длина отрезка $\left[x_{_k}; x_{_{k+1}}\right]$). Естественно считать составленное произведение приближенным значением площади k -й полоски.



Если теперь сделать тоже самое со всеми остальными полосками, то получим: площадь S заданной криволинейной трапеции приближенно равна площади S_n ступенчатой фигуры, составленной из прямоугольников. Таким образом, $S_n = f(x_0) \cdot \Delta x_0 + f(x_1) \cdot \Delta x_1 + \ldots + f(x_{n-1}) \cdot \Delta x_{n-1}$

 $+ f(x_k) \cdot \Delta x_k + ... + f(x_{n-1}) \cdot \Delta x_{n-1}$ Итак, $S \approx S_n$ причем, это приближенное равенство тем точнее, чем больше n.

T.e. $S = \lim_{n \to \infty} S_n$



Эта сумма называется <u>интегральной суммой</u> для функции y = f(x) на отрезке [a,b]. Определенным интегральной суммы, когда число элементарных отрезков неограниченно возрастает, а длина их стремится к нулю.

Определенный интеграл обозначается символом a (читается: определенный <u>интеграл от а до</u> b); $f^{(x)}$ называется подынтегральной функцией, a - переменной интегрирования, a - <u>нижним</u>, a - <u>верхним пределом</u> интегрирования.

Следовательно, по определению

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sum_{k=1}^{n} f(\xi_{k}) \cdot \Delta x_{k}$$

Определенный интеграл численно равен площади криволинейной трапеции, ограниченной кривой y = f(x), прямыми x = a, $x = b_{u \ ocbio} Ox$.

Формула Ньютона-Лейбница.

Пусть функция y = f(x) непрерывна на отрезке [a; b] и F(x) - одна из первообразных функции на этом отрезке, тогда справедлива формула Ньютона-Лейбница:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Физический смысл определенного интеграла:

Путь S, пройденный телом при прямолинейном движении со скоростью v(t) за интервал времени от t_1 до t_2 , вычисляется по формуле:

$$S = \int_{t_1}^{t_2} v(t)dt$$

Пример 1. Вычислить значение определенного интеграла по формуле Ньютона-Лейбница.

Решение.

Для начала отметим, что подынтегральная функция $y=x^2$ непрерывна на отрезке [1;3], следовательно, интегрируема на нем.

Из таблицы неопределенных интегралов видно, что для функции первообразных для всех действительных значений аргумента (следовательно, и

$$x \in [1;3]$$
) записывается как $F(x) = \int x^2 dx = \frac{x^3}{3} + C$

$$F(x) = \frac{x^3}{3}$$

Возьмем первообразную при C = 0:

Теперь осталось воспользоваться формулой Ньютона-Лейбница для вычисления определенного интеграла

$$\int_{1}^{3} x^{2} dx = \frac{x^{3}}{3} \Big|_{1}^{3} = \frac{3^{3}}{3} - \frac{1^{3}}{3} = \frac{26}{3}$$

Замена переменной в определенном интеграле.

Пусть функция y = f(x) определена и непрерывна на отрезке f(a; b). Множество [a; b] является областью значений некоторой функции x = g(z), которая определена на интервале $[\alpha; \beta]_{\mu}$ имеет на нем непрерывную производную,

Этой формулой удобно пользоваться в тех случаях, когда нам требуется вычислить

$$\int\limits_{a}^{b}f(x)dx$$
 интеграл $\int\limits_{a}^{b}f(x)dx$, причем неопределенный интеграл $\int\limits_{a}^{b}f(x)dx$ мы бы искали методом подстановки.

Разберем на примере для ясности.

Пример.

Вычислить значение определенного интеграла
$$\int_{9}^{13} \frac{1}{x\sqrt{2x-9}} dx$$

Решение.

Подынтегральная функция непрерывна на отрезке интегрирования, следовательно, определенный интеграл существует.

$$\sqrt{2x-9} = z \implies x = g(z) = \frac{z^2+9}{2}$$

Обозначим

Подставляем полученные результаты в формулу

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(g(z)) \cdot g'(z)dz$$

$$\int_{9}^{18} \frac{1}{x\sqrt{2x-9}} dx = \int_{3}^{3\sqrt{3}} \frac{1}{\frac{z^{2}+9}{2} \cdot z} \cdot \left(\frac{z^{2}+9}{2}\right) dz =$$

$$= \int_{3}^{3\sqrt{3}} \frac{1}{\frac{z^{2}+9}{2} \cdot z} \cdot z dz = \int_{3}^{3\sqrt{3}} \frac{2}{z^{2}+9} dz$$

Из таблицы неопределенных интегралов видно, что одной из первообразных $\frac{2}{z^2+9} \text{ является функция } \frac{\frac{2}{3} \operatorname{arctg} \frac{z}{3}}{3}, \text{ поэтому, по формуле Ньютона-Лейбница имеем}$

$$\int_{3}^{3\sqrt{3}} \frac{2}{z^2 + 9} dz = \left(\frac{2}{3} \operatorname{arctg} \frac{z}{3}\right)_{3}^{3\sqrt{3}} = \frac{2}{3} \operatorname{arctg} \frac{3\sqrt{3}}{3} - \frac{2}{3} \operatorname{arctg} \frac{3}{3} = \frac{2}{3} \left(\operatorname{arctg} \sqrt{3} - \operatorname{arctg} 1\right) = \frac{2}{3} \left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \frac{\pi}{18}$$

Если методом замены переменной взять неопределенный интеграл $\int \frac{1}{x\sqrt{2x-9}} dx$, то

$$\int \frac{1}{x\sqrt{2x-9}} dx = \frac{2}{3} arctg \frac{\sqrt{2x-9}}{3} + C$$
 мы придем к результату — Натогома. Пейбиния вышисиями

Таким образом, по формуле Ньютона-Лейбница вычисляем определенный интеграл:

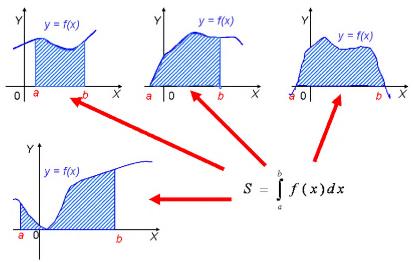
$$\int_{9}^{18} \frac{1}{x\sqrt{2x-9}} dx = \left(\frac{2}{3} \arctan \frac{\sqrt{2x-9}}{3}\right)\Big|_{9}^{18} = \frac{2}{3} \left(\arctan \frac{\sqrt{2\cdot 18-9}}{3} - \arctan \frac{\sqrt{2\cdot 9-9}}{3}\right) = \frac{2}{3} \left(\arctan \frac{\sqrt{3}}{3} - \arctan \frac{1}{3}\right) = \frac{2}{3} \left(\arctan \frac{1}{3} - \frac{\pi}{4}\right) = \frac{\pi}{18}$$

Как видите, результаты совпадают.

Вычисление площадей криволинейных трапеций

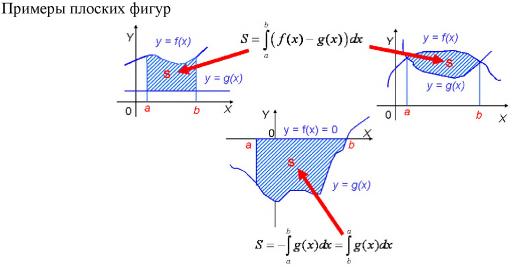
Криволинейной трапецией называется плоская фигура ограниченная линиями x = a, x = b, y = 0, y = f(x).

Примеры криволинейных трапеций



Вычисление площадей плоских фигур

Рассмотрим плоскую фигуру, представляющую собой множество точек плоскости лежащих в полосе между прямыми x = a, x = b и ограниченное сверху графиком непрерывной функции y = f(x) и снизу графиком непрерывной функции y = g(x). Причем f(x) > g(x) на промежутке (a; b) и f(a) = g(a), f(b) = g(b).



Примеры применения определенного интеграла.

Пример

Вычислить площадь фигуры, ограниченной параболой $y=x^2-6x+5$ и прямой y=x-1. Сделать чертеж.

Решение.

Построим параболу и прямую.

Для построения параболы найдем координаты ее вершины и точки пересечения ее с осями координат.

Вершина параболы является точкой экстремума, поэтому для ее отыскания найдем производную и приравняем ее к нулю.

$$y' = (x^2 - 6x + 5)' = 2x - 6$$
; $2x - 6 = 0$; $x = 3$, $x = 3$, $y(3) = 3^2 - 6 \cdot 3 + 5 = 9 - 19 - 8 + 5 = -4$.

Итак, вершина параболы в точке (3;-4).

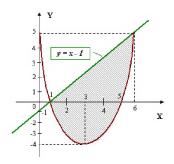
Точки пересечения параболы с осью Ох: y=0, тогда $x^2-6x+5=0$, откуда $x_1=1$; $x_2=5$, то есть точки (1;0) и (5;0).

Точка пересечения с осью Oy: x=0, тогда y=5; то есть точка (0;5).

Строим параболу по найденным точкам, замечая, что ветви параболы направлены вверх.

Прямую y=x-1 строим по двум точкам: (0;-1) и (1;0).

Заштрихуем плоскую фигуру, ограниченную параболой и прямой.



Найдем точки пересечения параболы и прямой, решив систему уравнений:

$$\begin{cases} y = x^2 - 6x + 5 \\ y = x - 1 \end{cases} \Rightarrow x^2 - 6x + 5 = x - 1 \Rightarrow x^2 - 7x + 6 = 0. \quad D = 49 - 4 \cdot 6 = 25; \quad x_{1,2} = \frac{7 \pm 5}{2}; \quad x_1 = 1; \quad x_2 = 6.$$

Для отыскания искомой площади воспользуемся формулой

$$S = \int_{a}^{b} [f_2(x) - f_1(x)] \cdot dx,$$

где функции $f_1(x)$ и $f_2(x)$ ограничивают фигуру соответственно снизу и сверху, то есть $f_2(x) \ge f_1(x)_{\text{при}} \ x \in [a;b]$.

B нашей задаче $f_1(x) = x^2 - 6x + 5$; $f_2(x) = x - 1$; $x \in [1, 6]$.

Поэтому:

$$S = \int_{1}^{6} \left[(x-1) - (x^{2} - 6x + 5) \right] \cdot dx = \int_{1}^{6} \left(-x^{2} + 7x - 6 \right) \cdot dx =$$

$$= \left[-\frac{x^{3}}{3} + 7 \cdot \frac{x^{2}}{2} - 6x \right] \Big|_{1}^{6} = \left(-\frac{216}{3} + 7 \cdot \frac{36}{2} - 36 \right) - \left(-\frac{1}{3} + \frac{7}{2} - 6 \right) = \frac{125}{6}$$

Ответ:

$$S = \frac{125}{6} = 20 \frac{5}{6}$$
 (кв.ед).

Раздел 7 Векторы

План изучения темы (перечень вопросов, обязательных к изучению):

- 1. Векторы. Модуль вектора. Равенство векторов.
- 2. Сложение векторов. Умножение вектора на число.
- 3. Разложение вектора по направлениям. Угол между двумя векторами. Проекция вектора на ось.
- 4. Координаты вектора. Скалярное произведение векторов.

Beктор — это направленный отрезок (т.е. отрезок, для которого указано, какой из его концов считается началом, а какой — концом).

Любая точка пространства — это *нулевой вектор* (т.е. если начало и конец вектора совпадают, то такой вектор называют нулевым).

Длиной вектора называется число, равное длине отрезка, изображающего вектор.

Замечание. Длина нулевого вектора равна нулю.

Два ненулевых вектора называются *коллинеарными*, если они лежат на одно прямой или на параллельных прямых.

Два вектора называются равными если они:

- 1) они коллинеарные;
- 2) они сонаправленные;
- 3) их длины равны.

Замечание. 1) Вектор можно переносить параллельно самому себе.

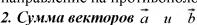
2) От любой точки можно отложить вектор, равный данному, и притом только один.

Действия над векторами.

1. Противоположный

Два ненулевых вектора называются противоположными, если их длины равны и они противоположно направлены.

Правило: Чтобы построить противоположный вектор, нужно параллельным переносом снести данный и изменить его направление на противоположное.



Правило:1) отложить от какой-нибудь точки A вектор \overline{AB} равный вектору \overrightarrow{a} (вектор \overrightarrow{a} изображен на рисунке синим цветом, процесс откладывания вектора — параллельный перенос показан на рисунке серыми стрелками);

2) от точки B (конец вектора \vec{a}) отложить вектор \vec{bC} , равный вектору \vec{b} (вектор \vec{b} изображен на рисунке красным цветом, процесс откладывания вектора — параллельный перенос показан на рисунке черными стрелками)

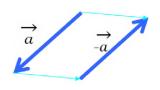
3) соединить точки A и C , \overrightarrow{AC} - это и есть вектор $\vec{a}+\vec{b}$ (сумма векторов $\vec{a}+\vec{b}$ изображен на рисунке зеленым цветом)

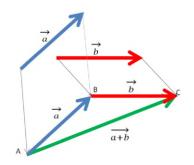
3. Разность векторов \vec{a} \vec{u} \vec{b}

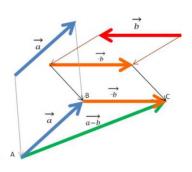
Разностью векторов \vec{a} u \vec{b} называется сумма вектора \vec{a} и вектора $\vec{-b}$ (противоположного вектору \vec{b}).

Правило: 1) построить вектор \vec{b} , противоположный вектору \vec{b} (процесс построения вектора противоположного показан на рисунке коричневыми стрелками; вектор $\vec{-b}$ изображен на рисунке оранжевым цветом);

2) отложить от какой-нибудь точки A вектор \overline{AB} равный вектору \overline{a} (вектор \overline{a} изображен на рисунке синим







цветом, процесс откладывания вектора — параллельный перенос показан на рисунке серыми стрелками);

 \overrightarrow{BC} , равный вектору $\overrightarrow{-b}$ (вектор $\overrightarrow{-b}$ изображен на рисунке оранжевым цветом, процесс откладывания вектора — параллельный перенос показан на рисунке черными стрелками)

4) соединить точки A и C, \overrightarrow{AC} - это и есть вектор $\overrightarrow{a}+(\overrightarrow{-b})=\overrightarrow{a}-\overrightarrow{b}$ (разность векторов $\overrightarrow{a}-\overrightarrow{b}$ изображен на рисунке зеленым цветом)

4. Умножение вектора \vec{a} на число λ

Произведением ненулевого вектора \vec{a} на число λ называется вектор \vec{b} , длина которого равна $|\lambda|\cdot|\vec{a}|$, причем:

при $\lambda > 0$ векторы \vec{a} u \vec{b} сонаправлены;

при $\lambda < 0$ векторы \vec{a} u \vec{b} противоположно направлены.

Замечание. при $|\lambda| > 1$ вектор увеличивается в длине;

при
$$0 < |\lambda| < 1$$

Правило: 1) при $|\lambda| > 1$ вектор \vec{a} увеличить в $|\lambda|$ раз, при $|\lambda| < 1$ вектор \vec{a} уменьшить в $|\lambda|$ раз;

2) если $\lambda > 0$ направление оставить прежним, при $\lambda < 0$ направление поменять на противоположный.

Свойства векторов

1)
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

2)
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{b} + (\vec{a} + \vec{c})$$

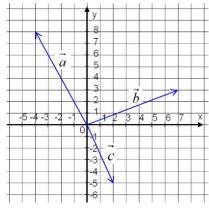
3)
$$(k \cdot l) + \vec{a} = k \cdot (l \cdot \vec{a})$$

4)
$$k \cdot (\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$$

5)
$$(k+l) \cdot \vec{a} = k \cdot \vec{a} + l \cdot \vec{a}$$

6) Если \vec{a} u \vec{b} коллинеарные, и $\vec{a} \neq \vec{0}$, то существует число k такое, что $\vec{b} = k \cdot \vec{a}$

<u>Определение</u>. *Координатами вектора* называется координаты его конечной точки при условии, что вектор перемещен параллельно самому себе так, чтобы его начало совпало с началом координат.



$$a = (-4;8)$$

$$\vec{b}=(7;3)$$

$$\vec{c} = (2;-5)$$

Действия над векторами, заданными своими координатами

Пусть $\vec{a} = (x_1; y_1)$ $\vec{b} = (x_2; y_2)$

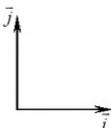
- 1) Сумма векторов $\vec{a} + \vec{b} = (x_1 + x_2; y_1 + y_2)$
- **2)** Разность векторов $\vec{a} \vec{b} = (x_1 x_2; y_1 y_2)$
- **3)** Умножение вектора на число $\lambda \cdot \vec{a} = (\lambda \cdot x, \lambda y, \lambda y)$
- **4)** Длина вектора $|\vec{a}| = \sqrt{x_1^2 + y_1^2}$
- **5)** Скалярное произведение векторов $(\vec{a}, \vec{b}) = \vec{a} \cdot \vec{b} = x_1 \cdot x_2 + y_1 \cdot y_2$
- 6) Угол между векторами

$$Cos \varphi = \frac{(\vec{a}, \vec{b})}{|\vec{a}| \cdot |\vec{b}|} = \frac{x_1 \cdot x_2 + y_1 \cdot y_2}{\sqrt{x_1^2 + y_1^2 \sqrt{x_1^2 + y_1^2}}}$$

Если \overrightarrow{a} и \overrightarrow{b} — два неколлинеарных вектора в плоскости, а \overrightarrow{z} — произвольный вектор в той же плоскости, то всегда существуют такие числа \overrightarrow{a} и \overrightarrow{b} , что $\overrightarrow{z} = \alpha \overrightarrow{a} + \beta \overrightarrow{b}$. В этом случае говорят, что вектор \overrightarrow{z} разложен по векторам \overrightarrow{a} и \overrightarrow{b} .

Если u^j — неколлинеарные единичные векторы (т. е. вектора, модуль которых равен единице) u^j , то произвольный вектор плоскости может быть представлен в виде u^j . В этом случае говорят, что вектор имеет в системе u^j координаты u^j .

Если векторы i и j взаимно перпендикулярны, причем вектор j может быть получен из вектора поворотом против часовой стрелки, то говорят, что прямые, в которых лежат и , образуют декартову прямоугольную систему координат, а числа $\{a_1; a_2\}$ называются ∂ екартовыми координатами вектора \overline{a} .



Пусть точка A с координатами $\{x_1;y_1\}$ — начало вектора \overrightarrow{a} , а точка B с координатами $\{x_2;y_2\}$ — его конец. Тогда координаты вектора связаны с координатами точек A и B формулами: $a_1=x_2-x_1$, $a_2=y_2-y_1$, т. е. декартовы координаты вектора равны разности соответствующих координат конца вектора и его начала.

Декартовы координаты вектора \overrightarrow{a} являются проекциями этого вектора на соответственные оси систем координат: $a_1=np_x\overrightarrow{a}$, $a_2=np_x\overrightarrow{a}$.

Использование координат и векторов при решении математических и прикладных задач

Пример 1. Дано: A(2;-1;4), B(3;2;-6), C(-5;0;2), D – середина CB, найти AD.

Решение: Найдем координаты D

$$x = \frac{x_1 + x_2}{2} = \frac{-5 + 3}{2} = -1$$
 $y = \frac{y_1 + y_2}{2} = \frac{0 + 2}{2} = 1$

$$z = \frac{z_1 + z_2}{2} = \frac{2 - 6}{2} = -2$$
 $D = (-1; 1; -2)$

Найдем длину AD
$$AD = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2} = \sqrt{(-1-2)^2+(1+1)^2+(-2-4)^2} = \sqrt{9+4+36} = 7$$

Ответ: AD=7

Пример 2. Даны вершины треугольника A(0;2;0), B(-2;5;0), C(-2;2;6). Найти его площадь.

Решение: Сначала найдём векторы:

$$\overline{AB} = (-2 - 0; 5 - 2; 0 - 0) = (-2; 3; 0);$$

$$\overline{AC} = (-2 - 0; 2 - 2; 6 - 0) = (-2; 0; 6).$$

Затем векторное произведение векторов по формуле:

$$\overline{N} = \begin{bmatrix} \overline{AB} \times \overline{AC} \end{bmatrix} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ -2 & 3 & 0 \\ -2 & 0 & 6 \end{vmatrix} = \begin{vmatrix} 3 & 0 \\ 0 & 6 \end{vmatrix} \cdot \overline{i} - \begin{vmatrix} -2 & 0 \\ -2 & 6 \end{vmatrix} \cdot \overline{j} + \begin{vmatrix} -2 & 3 \\ -2 & 0 \end{vmatrix} \cdot \overline{k} =$$

$$= (18-0) \cdot \bar{i} - (-12-0) \cdot \bar{j} + (0+6) \cdot \bar{k} = 18\bar{i} + 12\bar{j} + 6\bar{k}$$

Вычислим длину вектора:

$$|\overline{M}| = \sqrt{18^2 + 12^2 + 6^2} = \sqrt{324 + 144 + 36} = \sqrt{504} = 6\sqrt{14}$$

По определению, длина вектора есть площадь параллелограмма, а следовательно:

$$S_{\Delta ABC} = \frac{1}{2} \cdot \left| \overline{N} \right| = \frac{1}{2} \cdot 6\sqrt{14} = 3\sqrt{14}$$

Ответ:

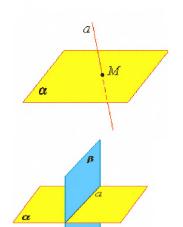
$$S_{AABC} = 3\sqrt{14} \text{ eg}^2. \approx 11,22 \text{ eg}^2.$$

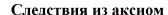
Раздел 8 Прямые и плоскости в пространстве

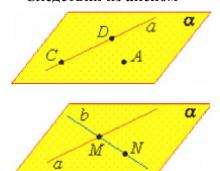
План изучения темы:

- 1. Аксиомы стереометрии
- 2. Взаимное расположение двух прямых в пространстве.
- 3. Взаимное расположение прямой и плоскости в пространстве. Параллельность прямой и плоскости. Перпендикулярность прямой и плоскости. Перпендикуляр и наклонная. Угол между прямой и плоскостью.
- 4. Взаимное расположение плоскостей в пространстве. Параллельность плоскостей. Двугранный угол. Угол между плоскостями. Перпендикулярность двух плоскостей.
- 5. Геометрические преобразования пространства: параллельный перенос, симметрия относительно плоскости. Параллельное проектирование. Изображение пространственных фигур.
- А1. Через любые три точки, не лежащие на одной прямой, проходит плоскость и притом только одна.
- А2. Если две точки прямой лежат в плоскости, то и все точки прямой лежат в этой плоскости (прямая лежит в плоскости или плоскость проходит через прямую).
- А3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей (т.е. плоскости пересекаются по прямой).
- 1. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.
- 2. Через две пересекающиеся прямые проходит плоскость, и притом только одна.

Аксиомы планиметрии.







Взаимное расположение прямых в пространстве

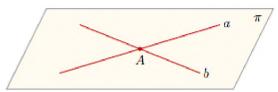
Существует три варианта взаимного расположения двух прямых в пространстве: прямые могут быть пересекающимися, параллельными и скрещивающимися.

Пересекающиеся прямые

Две различные прямые называются пересекающимися, если они имеют общую точку.

Точка пересечения единственна: если две прямые имеют две общие точки, то они совпадают.

Пересекающиеся прямые изображены на рисунке. Прямые а и b, как видим, пересекаются в точке А

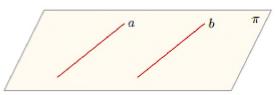


Заметьте, что существует единственная плоскость, проходящая через две пересекающиеся прямые. Это также показано на рисунке: через прямые а и b проходит единственная плоскость π .

Параллельные прямые

<u>Определение</u>. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

На рисунке показаны параллельные прямые а и b; через них проходит (единственная) плоскость π



Параллельность обладает важным свойством транзитивности. Именно, для трёх различных прямых a, b и с выполнено:

$$a \parallel b$$
 и $b \parallel c \Rightarrow a \parallel c$

Скрещивающиеся прямые

<u>Определение</u>. Две прямые называются скрещивающимися, если они не параллельны и не пересекаются.

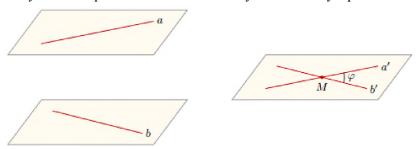
Равносильное определение такое: две прямые называются скрещивающимися, если они не лежат в одной плоскости.

На рисунке показаны скрещивающиеся прямые а и b

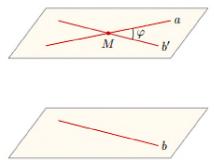
Определение угла между скрещивающимися прямыми

Пусть прямые а и b скрещиваются. Возьмём в пространстве произвольную точку M. Дальнейшие действия зависят от того, принадлежит точка M одной из наших прямых или нет.

1. Пусть точка M не принадлежит ни прямой a, ни прямой b. Проведём через M прямую a', параллельную a, и прямую b', параллельную b. Прямые a' и b' пересекаются; тогда угол φ между этими прямыми и называется углом между прямыми a и b.

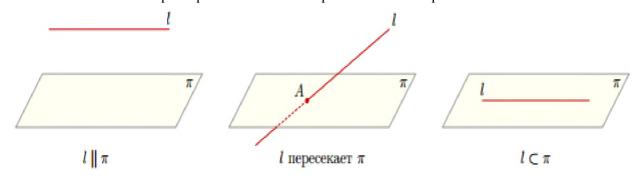


2. Пусть точка M принадлежит одной из прямых; например, пусть $M \in a$. Проведём через точку M прямую b^+ , параллельную b. Прямые a и b b^+ пересекаются; угол ϕ между этими прямыми и называется углом между прямыми a и b.



Взаимное расположение прямой и плоскости

Возможны три варианта взаимного расположения прямой и плоскости.



- 1. Прямая параллельна плоскости, если она не имеет с плоскостью общих точек. На левом рисунке прямая l параллельна плоскости π .
- 2. Прямая пересекает плоскость, если она имеет с плоскостью ровно одну общую точку. На рисунке в центре прямая l пересекает плоскость π в точке A.
- 3. Прямая лежит в плоскости, если каждая точка прямой принадлежит этой плоскости. На правом рисунке прямая l лежит в плоскости π . В таком случае говорят ещё, что плоскость π проходит через прямую l.

Признак параллельности прямой и плоскости. Если прямая l параллельна некоторой прямой, лежащей в плоскости, то прямая l параллельна этой плоскости.

Теорема. Пусть прямая l параллельна плоскости π . Если плоскость σ проходит через прямую l и пересекает плоскость π по прямой m, то $m \parallel l$

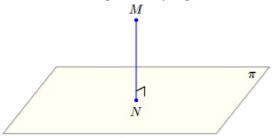


<u>Определение.</u> Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.

<u>Признак перпендикулярности прямой и плоскости</u>. Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна этой плоскости.

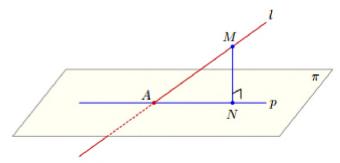
Перпендикуляр и наклонная

Рассмотрим плоскость π и точку M, не принадлежащую этой плоскости. Из точки M проведём прямую, перпендикулярную плоскости π и пересекающую её в точке N. Отрезок MN называется перпендикуляром, проведённым из точки M к плоскости π . Точка N называется основанием этого перпендикуляра.

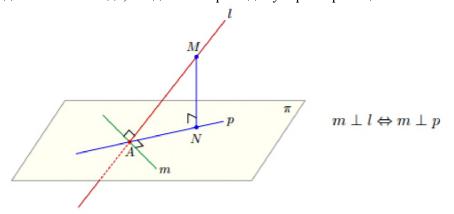


Если прямая пересекает плоскость и не перпендикулярна этой плоскости, то такая прямая называется наклонной. На рисунке мы видим наклонную l , пересекающую плоскость π в точке A.

Возьмём произвольную точку М прямой l, не лежащую в плоскости π , и проведём перпендикуляр MN к этой плоскости. Соединив точку A с основанием N проведённого перпендикуляра, получим прямую р, лежащую в плоскости π . Прямая р называется проекцией наклонной l на плоскость π .



<u>Теорема о трёх перпендикулярах.</u> Прямая на плоскости перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции наклонной.



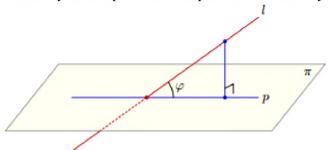
Угол между прямой и плоскостью

Понятие угла между прямой и плоскостью можно ввести для любого взаимного расположения

прямой и плоскости.

- Если прямая l перпендикулярна плоскости π , то угол между l и π считается равным 90^0
- Если прямая l параллельна плоскости π или лежит в этой плоскости, то угол между l и π считается равным нулю.
- Если прямая l является наклонной к плоскости π , то угол между l и π это угол φ между

прямой l и её проекцией р на плоскость π , т.е. угол между прямой и плоскостью есть угол между этой прямой и её проекцией на данную плоскость.



Движение и подобие

Определение и примеры движений.

Определение: Движением называется преобразование (т. е. взаимно однозначное отображение плоскости на себя), при котором расстояние между любыми двумя точками равно расстоянию между их образами.

Из определения сразу вытекают свойства движений.

- 1. Движение переводит любую прямую в прямую.
- 2. Движение переводит любой угол в равный угол.
- 3. Композиция (последовательное применение) двух движений есть движение.
- 4. Преобразование, обратное движению, есть движение.
- 5. Тождественное преобразование (преобразование, оставляющее каждую точку на месте) есть движение.

Параллельный перенос

Параллельным переносом в пространстве называется такое преобразование, при котором произвольная точка (x; y; z) фигуры переходит в точку (x + a; y+b; z + c), где числа a, b, c одни и те же для всех точек (x; y; z). Параллельный перенос в пространстве задается формулами

$$x' = x + a, y' = y + b, z' = z + c,$$

Параллельный перенос в пространстве обладает следующими свойствами:

- 1. Параллельный перенос есть движение.
- 2. При параллельном переносе точки смещаются по параллельным прямым на одно и то же расстояние.
- 3. При параллельном переносе каждая прямая переходит в параллельную ей прямую или в себя
- 4. Каковы бы ни были точки А и А`, существует единственный параллельный перенос, при котором точка А переходит в точку А`.
- 5. При параллельном переносе в пространстве каждая плоскость переходит либо в себя, либо в параллельную ей плоскость.

<u>Симметрия относительно плоскости</u> - это такое свойство геометрической фигуры, когда любой точке, расположенной по одну сторону плоскости, всегда будет соответствовать точка, расположенная по другую сторону плоскости, а отрезки, соединяющие эти точки, будут перпендикулярны плоскости симметрии и делятся ею пополам.

Поворот

Определение. Поворотом вокруг точки О на угол ϕ называется преобразование плоскости, переводящее каждую точку А в такую точку A', что OA=OA' и угол между лучами OA и OA' (т. е. угол, отсчитываемый против часовой стрелки от луча OA к лучу OA') равен ϕ .

Утверждение. Поворот является движением.

Симметрия

Определение: Симметрией относительно прямой 1 называется преобразование, переводящее каждую точку A в такую точку A', что прямая 1 перпендикулярна отрезку AA' и проходит через его середину.

Утверждение. Симметрия является движением.

Определение. Подобием называется преобразование, при котором для любых двух точек A и B отношение расстояний между их образами A' и B' к расстоянию между самими точками равно одному и тому же числу: $A'B' = k \cdot AB$. Число k > 0 называется коэффициентом подобия. Из определения сразу следует, что подобия образуют группу. Действительно, композиция подобий с коэффициентами k1 и k2 будет подобием с коэффициентом k1 k2, а преобразование, обратное подобию с коэффициентом k,—подобием с коэффициентом k. Важным частным случаем подобия является гомотетия.

Раздел 9 Геометрические тела

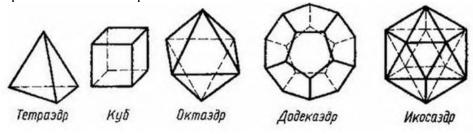
План изучения темы (перечень вопросов, обязательных к изучению):

- 6. Многогранники.
- 7. Призма. Понятие, формулы площади поверхности и объема.
- 8. Пирамида. Понятие, формулы площади поверхности и объема.
- 9. Тела вращения. Понятие, формулы площади поверхности и объема.
- 10. Приемы построения сечений

Многогранник — это часть пространства, ограниченная совокупностью конечного числа плоских многоугольников, соединённых таким образом, что каждая сторона любого многогранника является стороной ровно одного многоугольника. Многоугольники называются гранями, их стороны — рёбрами, а вершины — вершинами.

Правильным называется многогранник, у которого все грани это правильные многоугольники и все многогранные углы при вершинах равны.

Примеры правильных многогранников

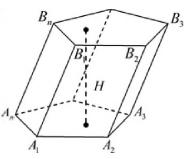


Призма

Призмой называется многогранник, две грани которого n - угольники, а остальные m граней — параллелограммы.

Боковые ребра призмы, как противоположные стороны параллелограммов, последовательно приложенных друг к другу, равны и параллельны.

Перпендикуляр, проведенный из какой-либо точки одного основания к плоскости другого основания, называется высотой призмы. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы.



Поверхность призмы состоит из *оснований* и *боковой поверхности* призмы. Боковая поверхность призмы состоит из параллелограммов.

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется *прямой*. В противном случае призма называется *наклонной*.

У прямой призмы боковые грани – прямоугольники.

Высота прямой призмы равна ее боковому ребру.

Прямая призма называется *правильной*, если она прямая, и ее основания — правильные многоугольники

Площадь поверхности и объём призмы

Пусть H — высота призмы, A_1B_1 — боковое ребро призмы, $P_{\text{осн}}$ — периметр основания призмы, $S_{\text{осн}}$ площадь основания призмы, $S_{\text{бок}}$ — площадь боковой поверхности призмы, $S_{\text{полн}}$ — площадь полной поверхности призмы, V - объем призмы, P_{\perp} — периметр перпендикулярного сечения призмы, S_{\perp} — площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:

$$S_{60\kappa} = P_{\perp}A_1B_1$$
 $S_{60\kappa} = 2S_{60\kappa} + S_{60\kappa}$ $V = S_{60\kappa}H$

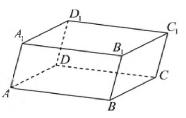
Для *прямой призмы*, у которой боковые ребра перпендикулярны плоскостям оснований, площадь боковой поверхности и объем даются формулами:

$$S_{60K} = P_{90H}H \quad V = S_{90H}H$$

Параллелепипед

Параллелепипедом называется призма, основанием которой служит параллелограмм.

Параллелограммы, из которых составлен параллелепипед, называются его *гранями*, их стороны — *ребрами*, а вершины параллелограммов — *вершинами* параллелепипеда. У параллелепипеда все грани — параллелограммы.



Параллелепипеды, как и всякие призмы, могут быть прямые и наклонные.

Обычно выделяют какие-нибудь две противоположные грани и называют их *основаниями*, а остальные грани — *боковыми гранями параллелетипеда*. Ребра параллелепипеда, не принадлежащие основаниям, называют *боковыми ребрами*.

Две грани параллелепипеда, имеющие общее ребро, называются *смежными*, а не имеющие общих ребер — *противоположными*.

Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется *диагональю параплелетипеда*.

Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным параллелепипедом. У прямоугольного параллелепипеда все грани — прямоугольники.

Длины не параллельных ребер прямоугольного параллелепипеда называются его *линейными* размерами (измерениями). У прямоугольного параллелепипеда три линейных размера.

Свойства параллелепипеда:

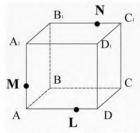
- 1) Противоположные грани параллелепипеда равны и параллельны.
- 2) Все четыре диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
- 3) Боковые грани прямого параллелепипеда прямоугольники.
- 4) Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Правила построения сечений многогранников:

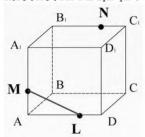
- 1) проводим прямые через точки, лежащие в одной плоскости;
- 2) ищем прямые пересечения плоскости сечения с гранями многогранника, для этого
- а) ищем точки пересечения прямой принадлежащей плоскости сечения с прямой, принадлежащей одной из граней (лежащие в одной плоскости);
- б) параллельные грани плоскость сечения пересекает по параллельным прямым.

Примеры построения сечений: Пример 1.

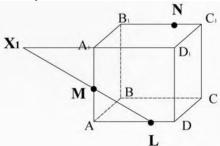
Рассмотрим прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Построим сечение, проходящее через точки M, N, L.



Соединим точки М и L, лежащие в плоскости AA₁D₁D.

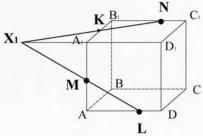


Пересечем прямую ML (принадлежащую сечению) с ребром A_1D_1 , они лежат в одной плоскости AA_1D_1D . Получим точку X_1 .

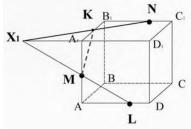


Точка X_1 лежит на ребре A_1D_1 , а значит и плоскости $A_1B_1C_1D_1$, соединим ее сточкой N, лежащей в этой же плоскости.

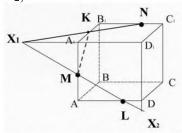
 $X_1\ N$ пересекается с ребром A_1B_1 в точке K.



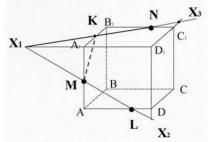
Соединим точки К и М, лежащие в одной плоскости AA_1B_1B .



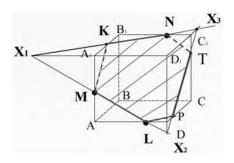
Найдем прямую пересечения плоскости сечения с плоскостью DD_1C_1C : пересечем прямую ML (принадлежащую сечению) с ребром DD_1 , они лежат в одной плоскости AA_1D_1D , получим точку X_2 ;



пересечем прямую KN (принадлежащую сечению) с ребром D_1C_1 , они лежат в одной плоскости $A_1B_1C_1D_1$, получим точку X_3 ;



Точки X_2 и X_3 лежат в плоскости DD_1C_1C . Проведем прямую X_2 X_3 , которая пересечет ребро C_1C в точке T, а ребро DC в точке P. И соединим точки L и P, лежащие в плоскости ABCD.



MKNTPL - искомое сечение.

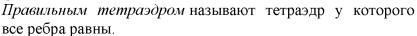
Пирамида

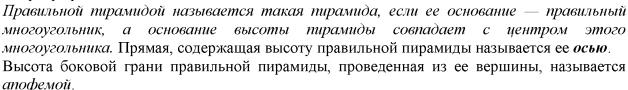
Пирамидой называется многогранник одна из граней которого является произвольным многоугольником, а остальные грани — треугольники, имеющие общую вершину.

Перпендикуляр, проведенный из вершины пирамиды к плоскости основания, называется *высотой* пирамиды.

Тетраэдр — это пирамида, в основании которой лежит треугольник.

Треугольники, из которых состоит тетраэдр, называются его *гранями*, их стороны — *ребрами*, а вершины — *вершинами* тетраэдра. Два ребра тетраэдра, не имеющие A_n общих вершин, называются *противоположными*. Обычно выделяют одну из граней тетраэдра и называют ее *основанием*, а остальные грани называют *боковыми гранями*.



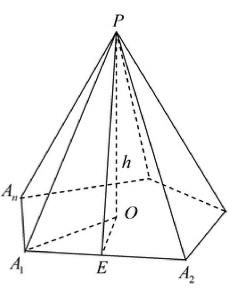


Усеченная пирамида (см. далее) называется *правильной*, если она получена сечением правильной пирамиды плоскостью, параллельной основанию. Основания правильной усеченной пирамиды – правильные многоугольники, а боковые грани – равнобедренные трапеции. Высоты этих трапеций называются *апофемами* усеченной пирамиды.

Свойства пирамиды:

Рассмотрим следующие утверждения:

- 1. Боковые ребра пирамиды равны.
- 2. Боковые ребра пирамиды одинаково наклонены к основанию пирамиды.
- 3. Вершина пирамиды проектируется в центр окружности, описанной около основания пирамиды.
- 4. Высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны, а высота пирамиды лежит внутри пирамиды.
- 5. Все двугранные углы при основании пирамиды равны.
- 6. Вершина пирамиды проектируется в центр окружности, вписанной в основание пирамиды.
- 7. В правильной треугольной пирамиде противоположные ребра попарно перпендикулярны.
- 8. Если боковые ребра пирамиды равны между собой, то в основании лежит правильный многоугольник, вокруг которого можно описать окружность, а вершина пирамиды проецируется в центр этой окружности.



9. Если двугранные углы при основании пирамиды равны между собой, то в основании пирамиды лежит многоугольник, в который можно вписать окружность, а вершина пирамиды проецируется в центр этой окружности.

Утверждения 1, 2, 3 и 4, 5, 6 равносильны.

Сечение пирамиды плоскостью, параллельной основанию

- Сечение пирамиды плоскостью, параллельной ее основанию (перпендикулярной высоте) делит высоту и боковые ребра пирамиды на пропорциональные отрезки.
- Сечение пирамиды плоскостью, параллельной ее основанию (перпендикулярной высоте) есть многоугольник, подобный основанию пирамиды, причем коэффициент подобия этих многоугольников равен отношению их расстояний от вершины пирамиды.
- Площади сечений, параллельных основанию пирамиды, относятся как квадраты их расстояний от вершины пирамиды.

Площадь поверхности и объём пирамиды

Пусть h — высота пирамиды, $P_{\text{осн}}$ — периметр основания пирамиды, $S_{\text{осн}}$ — площадь основания пирамиды, $S_{\text{полн}}$ — площадь боковой поверхности пирамиды, $S_{\text{полн}}$ — площадь полной поверхности пирамиды, V — объем пирамиды. Тогда имеют место следующие соотношения:

$$S_{
m nonh} = S_{
m och} + S_{
m dok} \hspace{0.5cm} V = rac{1}{3} S_{
m och} h$$

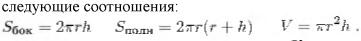
Если все двугранные углы при основании пирамиды равны $^{\beta}$, а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны $^{h_{60K}}$, то

$$S_{60\kappa} = \frac{1}{2} P_{\text{осн}} h_{60\kappa} \qquad S_{60\kappa} = \frac{S_{0ch}}{\cos \beta}$$

Цилиндр

Цилиндром называется фигура, полученная при вращении прямоугольника вокруг оси, содержащей его сторону.

Пусть h — высота цилиндра, r — радиус цилиндра, r — площадь боковой поверхности цилиндра, r — площадь полной поверхности цилиндра, r — объем цилиндра. Тогда имеют место следующие соотношения:



Конусом называется фигура, полученная при вращении прямоугольного треугольника вокруг оси, содержащей его катет.

Пусть h — высота конуса, r — радиус основания конуса, l — образующая конуса, $S_{\text{бок}}$ — площадь боковой поверхности конуса, V — объем конуса. Тогда имеют место следующие соотношения:

$$S_{60\text{\tiny K}} = \pi r l$$
 $S_{\text{полн}} = \pi r (r+l)$ $V = \frac{1}{3} \pi r^2 h$.

Сечение конуса плоскостью, параллельной основанию

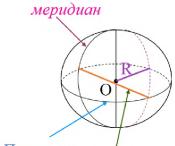
Сечение конуса плоскостью, параллельной его основанию (перпендикулярной высоте), делит высоту и образующие конуса на пропорциональные отрезки. Площади сечений конуса, параллельных его основанию, относятся как квадраты их расстояний от вершины конуса.

Шар и сфера

Шаром называется фигура, полученная при вращении полукруга вокруг оси, содержащей его диаметр.

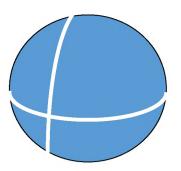
Сферой называется поверхность шара.

Сфера



Параллель диаметр (экватор)

Шар



Пусть R=OA— радиус шара, D=2R— его диаметр S— площадь ограничивающей шар сферы, S_h — площадь сферической поверхности ш трового сегмента (шарового слоя), высота которого равна h, V— объем шара, $V_{\mathtt{CEFM}}$ — объем сектора, ограниченного сегментом, высота которого равна h. Тогда имеют место следующие соотношения:

$$D = 2R$$

$$S_{\rm h}=2\pi Rh$$

$$V = \pi h^2 (R - \frac{1}{3}h)$$

$$S = 4\pi R^2$$

$$V = \frac{4}{3}\pi R^3$$

$$V = \frac{2}{3}\pi R^2 h$$

Раздел 10 Элементы комбинаторики, статистики, теории вероятностей План изучения темы (перечень вопросов, обязательных к изучению):

- 1) Элементы комбинаторики
- 2) Элементы теории вероятностей
- 3) Элементы математической статистики

<u>Теория вероятностей</u> - математическая наука, изучающая закономерности, присущие массовым случайным явлениям.

Случайное событие – любой исход опыта, который может произойти или не произойти.

Элементарное событие – непосредственный исход опыта (неразложимые и взаимоисключающие исходы).

Пространство элементарных событий — множество всех элементарных исходов (обозначается Ω).

Достоверное событие – событие, которое обязательно наступит (произойдет) в результате данного опыта (обозначается Ω).

Невозможное событие - событие, которое заведомо не произойдет в результате данного опыта (обозначается \emptyset).

Два события называются несовместными, если появление одного их них исключает появление другого события в одном и том же опыте. В противном случае – **совместные**.

Пример.

Опыт – бросание игрального кубика.

События: А – выпало 5 очков;

В – выпало четное число очков;

С – выпало 7 очков;

D – выпало целое число очков;

Е – выпало не менее 3-х очков.

A, B -случайные; C -невозможное; D -достоверное;

A, B – несовместные; A, E – совместные.

 $A_1, A_2, ..., A_n$ называются *попарно несовместными*, если любые два из них несовместны.

Несколько событий образуют *полную группу*, если они попарно несовместны и в результате каждого опыта происходит одно и только одно из них.

Несколько событий в данном опыте называются *равновозможными*, если одно из них не является более возможным, чем другие, т.е. все события имеют равные шансы.

<u>Действия над событиями</u>	
1) Сумма (ИЛИ) Суммой событий A и B называется событие $C = A + B$, состоящее в наступлении хотя бы одного из них (А ИЛИ B, т.е. или A или B или оба вместе)	
2) Произведение (И) Произведением событий A и B называется событие $C = A \cdot B$, состоящее в совместном наступлении этих событий (А И В одновременно)	Ω B
3) <i>Разность</i> (БЕ3) Разностью событий A и B называется событие $C = A - B$, происходящее тогда и только тогда, когда происходит событие A, но не происходит событие B (A БЕ3 B)	Ω
4) <i>Противоположное</i> (HE) Противоположным событию A называется событие \overline{A} , которое происходит тогда и только тогда, когда не происходит событие A (HE A)	A
5) Событие А влечет событие В Событие А влечет событие В (А является частым случаем события В), если из того, что происходит событие А, следует, что происходит событие В (из А СЛЕДУЕТ В)	Ω
6) Равные Если событие А влечет событие В и событие В влечет событие А, то события А и В равные.	Ω

Статистическое и классическое определение вероятности

Пусть в $\bf n$ повторяющихся опытах некоторое событие $\bf A$ наступило $\bf m$ раз.

Тогда число т называют частотой события А,

$$P^*(A) = \frac{m}{n}$$
 называется *относительной частооты*).

Свойства относительной частоты

- 1. $0 \le P^*(A) \le 1$
- 2. $P^*(\emptyset) = 0$ (частость невозможного события равна 0)
- 3. $P^*(\Omega) = 1$ (частость достоверного события равна 1)
- 4. Частость двух несовместных событий равна сумме частостей этих событий, т. е. если $A \cdot B = \emptyset$, то $P^*(A + B) = P^*(A) + P^*(B)$

Свойство статистической устойчивости

C увеличением числа опытов (т.е. \mathbf{n}) частость принимает значение, близкое к некоторому постоянному числу.

Статистическое определение вероятности

Вероятность события – число, выражающее степень возможности его появления в рассматриваемом опыте.

Статистической вероятностью события A называется число около которого колеблется относительная частота события A при достаточно большом числе испытаний. (обозначается P(A))

T.o.
$$P(A) \approx P^*(A) = \frac{m}{n}$$

Классическое определение вероятности

Пусть проводится опыт с n исходами, которые можно представить в виде полной группы несовместных равновозможных событий. Такие исходы назовем — случаи (шансы, элементарные события), а *опыт* — *классический*.

Случай ω , который приводит к наступлению события A, называется *благоприятным* ему, т.е. случай ω влечет событие A.

Вероятностью события А называется отношение числа m случаев, благоприятствующих этому событию, к общему числу n случаев, т.е.

$$P(A) = \frac{m}{n}$$

Замечание: вероятность обладает теми же свойствами, что и относительная частота.

Пример

В урне находятся 12 белых и 8 черных шаров. Какова вероятность того, что наудачу вынутый шар будет белым?

Решение

А – событие вынут белый шар,

n - 12 + 8 = 20 (число всех равновозможных случаев)

m=12 (число случаев, благоприятствующих событию A)

тогда
$$P(A) = \frac{m}{n} = \frac{12}{20} = 0.6.$$

Элементы комбинаторики

Комбинаторика – раздел математики, в котором изучают задачи выбора элементов из заданного множества и расположения их в группы по заданным правилам. (в частности задачи о подсчете числа комбинаций (выборок), получаемых из элементов заданного конечного множества).

Привило умножения

Если из некоторого конечного множества первый объект (элемент х) можно выбрать n_1 способами и после каждого такого выбора второй объект (элемент у) можно выбрать n_2 способами, то оба объекта (x и y) в указанном порядке можно выбрать $n_1 \cdot n_2$ способами.

Пример

Сколько трехзначных чисел можно составить из цифр 1,2,3,4,5, если

- а) цифры не повторяются;
- б) цифры могут повторяться

Решение

- а) Имеется 5 различных способов выбора цифры для первого места (слева в трехзначном в числе). После того как первое место занято, осталось 4 цифры для заполнения второго места. Для заполнения третьего места остается выбор их трех цифр. Таким образом: $5 \cdot 4 \cdot 3 = 60$
- б) если цифры могут повторяться, то для каждого места в трехзначном числе 5 цифр. Таким образом: $5 \cdot 5 \cdot 5 = 125$.

Правило суммы

Если некоторый объект х можно выбрать n_1 способами, а объект у можно выбрать n_2 способами, причем первые и вторые способы не пересекаются, то любой из указанных объектов (х или у) можно выбрать $n_1 + n_2$ способами.

В группе 14 девушек и 6 юношей. Сколькими способами можно выбрать, для выполнения различных заданий, двух студентов одного пола.

Двух девушек можно выбрать (используя правило умножения) 14 · 13 = 182 способами. Двух юношей можно выбрать (используя правило умножения) 6.5 = 30 способами. Чтобы найти общее число способов воспользуемся правилом суммы: 182+30=212 способов.

Схема выбора без возвращений.

(Выбранные элементы не возвращаются в исходное множество, состоящее из п элементов) **Размещением** из **n** элементов по **m** элементов $(0 \le m \le n)$ называется любое упорядоченное подмножество данного множества, содержащее т элементов (выборки отличаются друг от друга либо составом элементов, либо порядком их расположения). Количество размещений вычисляется по формуле $A_n^m = \frac{n!}{(n-m)!}$

Пример

Сколькими способами можно составить двузначное число из цифр 1,2,3,4,5,6, если цифры не повторяются.

Решение

Т.к. цифры не повторяются, а порядок цифр важен, то это – размещения. $A_6^2 = \frac{6!}{(6-2)!} = \frac{4!\cdot 5 \cdot 6}{4!} = 5 \cdot 6 = 30.$

$$A_6^2 = \frac{6!}{(6-2)!} = \frac{4! \cdot 5 \cdot 6}{4!} = 5 \cdot 6 = 30.$$

Перестановкой из n элементов называется размещение из n элементов по n элементов (элементы не выбираются, а переставляются местами внутри множества).

Количество перестановок вычисляется по формуле $P_n = n!$

Пример

Сколькими способами можно составить шестизначное число из цифр 1,2,3,4,5,6, если цифры не повторяются.

Решение

Т.к. цифры не выбираются, а только переставляются, то это - перестановки.

$$P_6 = 6! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 720.$$

Сочетанием из **n** элементов по **m** элементов $(0 < m \le n)$ называется любое подмножество данного множества, содержащее m элементов (выборки отличаются друг от друга только составом элементов).

Количество сочетаний вычисляется по формуле $C_n^m = \frac{n!}{m!(n-m)!}$

Пример

Сколькими способами можно выбрать 3 цветка из вазы, в которой стоят 10 красных и 4 розовых гвоздики?

Решение

Т.к. порядок выбора не имеет значения, то это – сочетания.
$$C_{14}^3 = \frac{14!}{3!(14-3)!} = \frac{11! \cdot 12 \cdot 13 \cdot 14}{1 \cdot 2 \cdot 3 \cdot 11!} = 4 \cdot 13 \cdot 7 = 364.$$

Основы статистики

Статистика – это наука, занимающаяся сбором, измерением, обработкой анализов различных количественных и качественных данных

Этапы простейшей обработки данных:

- 1. Сбор данных
- 2. Упорядочивание и группировка
- 3. Составление таблицы распределения
- 4. Построение графика распределения (в виде многоугольника, гистограммы)
- 5. Вычисление основных числовых характеристик ряда распределения:
 - 5.1. Объем измерения (объем выборки) равен количеству измерений, т.е. $\sum f_i$
 - 5.2. Размах измерения (размах выборки) равен разности между наибольшим полученным значением и наименьшим).
 - 5.3. Мода (наиболее часто встречающийся результат), определяется по наивысшей частоте.
 - 5.4. Средняя выборочная равна частному от деления суммы всех результатов измерения на объем измерения.
 - 5.5. Медиана равна варианте, находящейся в середине сгруппированного ряда; если в середине находится две варианты, то медиана равна их полусумме.

Hомер медианы
$$N_{\theta} = \frac{\sum f_1}{2} + \frac{1}{2}$$
.

По накопленным частотам, используя номер медианы, находим ее зщначение

- 5.6. Относительная частота равна частному от деления частоты варианты на объем выборки, т.е. $s_i = \frac{f_i}{\sum f_i}$
- 5.7. Относительная частота в процентах это относительная частота умноженная на 100%.

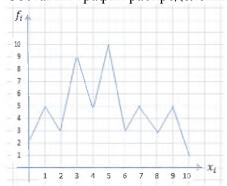
Пример. На праздничном вечере среди 50 студентов провели лотерею. Каждый студент задумал число от 0 до 10 и записал его на левой правой половине лотерейного билета Правые половинки билетов остались у их владельцев, а левые передали организатору лотереи. Как разобраться во всей массе этих билетов?

Решение. Упорядочим и сгруппируем билеты по записанным числам

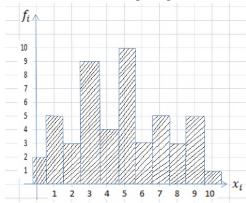
remember a mepage man men	Jimp	<i>y</i> C 1111 C	IIJI O I D.	1 110 50	umoun	11111111	1110010	V111			
Ответ	0	1	2	3	4	5	6	7	8	9	10
Варианта.х											
Кол-во	2	5	3	9	4	10	3	5	3	5	1
Частота, f_i											
Накопленные частоты	2	7	10	19	23	33	36	41	44	49	50
Относительная частота, 5	0,04	0,1	0,06	0,18	0,08	0,2	0,06	0,1	0,06	0,1	0,02

Относительная	частота	В	4	10	6	18	8	20	6	10	6	10	2
процентах, 5													

Составим график распределения



Составим полигон распределения



Вычислим основные числовые характеристики ряда распределения

- 1) Объем выборки= $\sum f = 2+5+3+9+4+10+3+5+3+5+1=50$
- 2) $Pa_{3}max = x_{max} x_{min} = 10-0=10$
- 3) Мода М_д=5 (по наивысшей частоте)
- 4) Средняя выборочная

$$\frac{x}{2 + 1 \cdot 5 + 2 \cdot 3 + 3 \cdot 9 + 4 \cdot 4 + 5 \cdot 10 + 6 \cdot 3 + 7 \cdot 5 + 8 \cdot 3 + 9 \cdot 5 + 10 \cdot 1}{2 + 5 + 3 + 9 + 4 + 10 + 3 + 5 + 3 + 5 + 1}$$

$$= \frac{236}{50} = 4.72$$

5) Медиана

Найдем номер медианы $N_{\rm g}=\frac{\sum f_{i}}{2}+\frac{1}{2}=\frac{50}{2}+\frac{1}{2}=25,5$ округлив получим $N_{\rm g}=26$ Т.к. $N_{\rm g}=26$, находим по накопленной частоте $M_{\rm g}=5$

6) Относительные частоты вычислим по формуле $s_i = \frac{f_i}{\sum f_i}$

$$\begin{split} s_1 &= \frac{f_1}{\sum f_i} = \frac{2}{50} = 0.04; \quad s_2 = \frac{f_2}{\sum f_i} = \frac{5}{50} = 0.1; \quad s_3 = \frac{f_3}{\sum f_i} = \frac{3}{50} = 0.06; \\ s_4 &= \frac{f_4}{\sum f_i} = \frac{9}{50} = 0.18; \quad s_5 = \frac{4}{\sum f_i} = \frac{2}{50} = 0.08 \quad s_6 = \frac{f_6}{\sum f_i} = \frac{10}{50} = 0.1 \\ s_7 &= \frac{f_7}{\sum f_i} = \frac{3}{50} = 0.06; \quad s_8 = \frac{f_8}{\sum f_i} = \frac{5}{50} = 0.1; \quad s_9 = \frac{f_9}{\sum f_i} = \frac{3}{50} = 0.06; \\ s_{10} &= \frac{f_{10}}{\sum f_i} = \frac{5}{50} = 0.1; \quad s_{11} = \frac{f_{11}}{\sum f_i} = \frac{1}{50} = 0.02 \end{split}$$

7) Относительные частоты в процентах

$$\begin{split} s_{1,\%} &= 4; \quad s_{2,\%} = 10; \quad s_{3,\%} = 6; \ s_{4,\%} = 18; \quad s_{5,\%} = 8; \quad s_{6,\%} = 10; \ s_{7,\%} = 6; \\ s_{8,\%} &= 10; \ s_{9,\%} = 6; \ s_{10,\%} = 10; \ s_{11,\%} = 2 \end{split}$$

Рекомендованная литература

- 1. Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: учебник для студентов профессиональных образовательных организаций, осваивающих профессии и специальности СПО. –М.,2017
- 2. Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: Сборник задач профильной направленности: учеб. пособие для студентов профессиональных образовательных организаций, осваивающих профессии и специальности СПО. –М.,2017
- 3. Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: Задачник: учеб. пособие для студентов профессиональных образовательных организаций, осваивающих профессии и специальности СПО. –М.,2017
- 4. Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: Электронный учеб.-метод. комплекс для студентов профессиональных образовательных организаций, осваивающих профессии и специальности СПО. –М., 2017
- 5. Гусев В.А., Григорьев С.Г., Иволгина С.В. Математика: алгебра и начала математического анализа, геометрия: учебник для студентов профессиональных образовательных организаций, осваивающих профессии и специальности СПО. –М.,2017